Abstract:
Schottky diodes are well-known nonlinear elements allowing for effective detection and mixing of electromagnetic radiation in the range through microwave to terahertz. Although less sensitive than their superconducting counterparts, they generally do not require cooling that makes them the devices of choice for applications where the ultimate sensitivity is not needed. In the emerging field of terahertz technology, there is a long-time quest for cheap and handy detectors for laboratory use, as well as for serial compact and midsize instruments. We describe the use of a quasi-optically coupled zero-bias planar Schottky-diode detector for monitoring picosecond pulses of synchrotron terahertz radiation and weak continuous-wave emission from an array of Josephson junctions.