Abstract:
We have investigated normal and resonant Raman scattering in Me-doped ZnO nanorods (Me = Mn, Co, Cu and Ni) prepared by thermal diffusion. Experimental results show that the normal Raman spectra consist of the conventional modes associated with wurtzite ZnO and impurity-related additional modes. Under resonant conditions, only longitudinal optical (LO) phonon scattering and its overtones are observed. The number of LO phonon lines and their relative intensity depend on the doping element and level. For the nanorods doped with Cu and Ni, we have observed LO phonon overtones up to eleventh order. This situation does not happen for the Mn-doped nanorods, which show only five LO phonon modes. By co-doping Mn and Co into the ZnO host lattice, however, the LO phonon overtones up to eleventh order are observed again. The nature of this phenomenon is explained by means of the study of XRD, TEM and photoluminescence.