High-pressure optical absorption measurements have been performed in defect chalcopyrite HgGa2Se4 to investigate the influence of pressure on the bandgap energy and its relation with the pressure-induced order–disorder processes that occur in this ordered-vacancy compound. Two different experiments have been carried out in which the sample undergoes either a partial or a total pressure-induced disorder process at 15.4 and 30.8 GPa, respectively. It has been found that the direct bandgap energies of the recovered samples at 1 GPa were around 0.15 and 0.23 eV smaller than that of the original sample, respectively, and that both recovered samples have different pressure coefficients of the direct bandgap than the original sample. A comprehensive explanation for these results on the basis of pressure-induced order–disorder processes is provided.
Description:
Access full text - https://doi.org/10.1002/pssb.201451714