dc.contributor.author | LUPAN, O. | |
dc.contributor.author | CHOW, L. | |
dc.contributor.author | CHAI, G. | |
dc.contributor.author | HEINRICH, H. | |
dc.contributor.author | PARK, S. | |
dc.contributor.author | SCHULTE, A. | |
dc.date.accessioned | 2020-06-17T10:13:22Z | |
dc.date.available | 2020-06-17T10:13:22Z | |
dc.date.issued | 2009 | |
dc.identifier.citation | LUPAN, O., CHOW, L., CHAI, G. et al. Synthesis of one-dimensional SnO2 nanorods via a hydrothermal technique. In: Physica E: Low-dimensional Systems and Nanostructures. 2009, Vol. 41, Is. 4, pp. 533-536. ISSN 1386-9477. | en_US |
dc.identifier.issn | 1386-9477 | |
dc.identifier.uri | https://doi.org/10.1016/j.physe.2008.10.001 | |
dc.identifier.uri | http://repository.utm.md/handle/5014/8934 | |
dc.description | Access full text - https://doi.org/10.1016/j.physe.2008.10.001 | en_US |
dc.description.abstract | We have developed a simple solution process to synthesize tin oxide nanorods. The influence of precursors and the reaction temperature on the morphology of SnO2 is investigated. SnO2 nanorods are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Raman spectroscopy. The as-grown SnO2 nanorods are uniform in size with a radius of 50–100nm and length of 1–2μm. The nanorods grow direction is parallel to the [101] direction. Possible growth mechanism of SnO2 nanorods is discussed. | en_US |
dc.language.iso | en | en_US |
dc.publisher | ELSEVIER | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | nanorods | en_US |
dc.subject | crystals | en_US |
dc.subject | semiconductors | en_US |
dc.subject | hydrothermal synthesis | en_US |
dc.subject | Raman spectra | en_US |
dc.title | Synthesis of one-dimensional SnO2 nanorods via a hydrothermal technique | en_US |
dc.type | Article | en_US |
The following license files are associated with this item: