IRTUM – Institutional Repository of the Technical University of Moldova

The geometry of fractional osculator bundle of higher order and applications

Show simple item record

dc.contributor.author ALBU, Ion Doru
dc.contributor.author NEAMŢU, Mihaela
dc.contributor.author OPRIŞ, Dumitru
dc.date.accessioned 2021-10-11T12:15:20Z
dc.date.available 2021-10-11T12:15:20Z
dc.date.issued 2007
dc.identifier.citation ALBU, Ion Doru, NEAMŢU, Mihaela, OPRIŞ, Dumitru. The geometry of fractional osculator bundle of higher order and applications. In: arXiv:0709.2000v1, 2007, p 1-20. en_US
dc.identifier.uri http://repository.utm.md/handle/5014/17677
dc.description.abstract Using the reviewed Riemann-Liouville fractional derivative we define the bundle Eak= Oscak(M) and highlight geometrical structures with a geometrical character. Also, we introduce the fractional osculator Lagrange space of k order and the main structures on it. The results are applied at the k order fractional prolongation of Lagrange, Finsler and Riemann fractional structures. en_US
dc.language.iso en en_US
dc.publisher Cornell University en_US
dc.rights Attribution-NonCommercial-NoDerivs 3.0 United States *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject geometrical structures en_US
dc.subject bundles en_US
dc.title The geometry of fractional osculator bundle of higher order and applications en_US
dc.type Article en_US


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States

Search DSpace


Browse

My Account