dc.contributor.author | BOBICEV, Victoria | |
dc.contributor.author | SOKOLOVA, Marina | |
dc.date.accessioned | 2021-04-10T15:09:20Z | |
dc.date.available | 2021-04-10T15:09:20Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | BOBICEV, Victoria, SOKOLOVA, Marina. No Sentiment is an Island. In: Discovery Science: proc. of 18th International Conference, DS 2015 4-6 Oct. 2015, Banff, AB, Canada, 2015, V. 9356 pp. 180-187. ISBN 978-3-319-24282-8. | en_US |
dc.identifier.isbn | 978-3-319-24282-8 | |
dc.identifier.uri | https://doi.org/10.1007/978-3-319-24282-8_4 | |
dc.identifier.uri | http://repository.utm.md/handle/5014/14096 | |
dc.description | Acces full text: https://doi.org/10.1007/978-3-319-24282-8_4 | en_US |
dc.description.abstract | In this study we propose a new method to classify sentiments in messages posted on online forums. Traditionally, sentiment classification relies on analysis of emotionally-charged words and discourse units found in the classified text. In coherent online discussions, however, messages’ non-lexical meta-information can be sufficient to achieve reliable classification results. Our empirical evidence is obtained through multi-class classification of messages posted on a medical forum. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature Switzerland | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | sentiment analysis | en_US |
dc.subject | binary feature | en_US |
dc.subject | sentiment classification | en_US |
dc.subject | emotional communication | en_US |
dc.subject | medical forums | en_US |
dc.subject | forums | en_US |
dc.title | No Sentiment is an Island | en_US |
dc.type | Article | en_US |
The following license files are associated with this item: