dc.contributor.author | BOBICEV, Victoria | |
dc.contributor.author | SOKOL, Marina | |
dc.date.accessioned | 2021-04-10T13:13:50Z | |
dc.date.available | 2021-04-10T13:13:50Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | BOBICEV, Victoria, SOKOL, Marina. Confused and Thankful: Multi-label Sentiment Classification of Health Forums. In: Advances in Artificial Intelligence: proc. Canadian AI 2017, 16-19 May, 2017, Edmonton, Canada, 2017, V. 10233, pp. 284-289. ISBN 978-3-319-57351-9. | en_US |
dc.identifier.isbn | 978-3-319-57351-9 | |
dc.identifier.uri | https://doi.org/10.1007/978-3-319-57351-9_33 | |
dc.identifier.uri | http://repository.utm.md/handle/5014/14090 | |
dc.description | Acces full text: https://doi.org/10.1007/978-3-319-57351-9_33 | en_US |
dc.description.abstract | Our current work studies sentiment representation in messages posted on health forums. We analyze 11 sentiment representations in a framework of multi-label learning. We use Exact Match and F-score to compare effectiveness of those representations in sentiment classification of a message. Our empirical results show that feature selection can significantly improve Exact Match of the multi-label sentiment classification (paired t-test, P = 0.0024). | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature Switzerland | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | sentiment classification | en_US |
dc.subject | multi-label learning | en_US |
dc.subject | learning | en_US |
dc.subject | medical forums | en_US |
dc.subject | forums | en_US |
dc.title | Confused and Thankful: Multi-label Sentiment Classification of Health Forums | en_US |
dc.type | Article | en_US |
The following license files are associated with this item: