dc.contributor.author | BOSTAN, Viorel | |
dc.contributor.author | HAN, Weimin | |
dc.contributor.author | REDDY, B. D. | |
dc.date.accessioned | 2021-04-07T07:47:41Z | |
dc.date.available | 2021-04-07T07:47:41Z | |
dc.date.issued | 2005 | |
dc.identifier.citation | BOSTAN, Viorel, HAN, Weimin, REDDY, B. D. A posteriori error estimation and adaptive solution of elliptic variational inequalities of the second kind. In: Applied Numerical Mathematics, 2005, V. 52, N. 1, pp. 13-38. ISSN 0168-9274. | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.apnum.2004.06.012 | |
dc.identifier.uri | http://repository.utm.md/handle/5014/14031 | |
dc.description | Access full text - https://doi.org/10.1016/j.apnum.2004.06.012 | en_US |
dc.description.abstract | In this paper, we perform an a posteriori error analysis for adaptive finite element solutions of elliptic variational inequalities of the second kind. A general framework for a posteriori error estimates is established by using duality theory in convex analysis. We then turn to an analysis of some particular a posteriori error estimates of residual type. Efficiency of the error estimators are investigated. Numerous numerical examples are included to illustrate the effectiveness of the a posteriori error estimates in adaptive solutions of the variational inequalities. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | posteriori error estimation | en_US |
dc.subject | finite element solution | en_US |
dc.subject | elliptic variational inequality | en_US |
dc.subject | variational inequality | en_US |
dc.subject | inequality | en_US |
dc.title | A posteriori error estimation and adaptive solution of elliptic variational inequalities of the second kind | en_US |
dc.type | Article | en_US |
The following license files are associated with this item: