IRTUM – Institutional Repository of the Technical University of Moldova

Hybrid chaotic attractor recurrent network transnet architecture for accurate state of charge estimation of Li-Ion batteries in EV application

Show simple item record

dc.contributor.author KUMARI, Ch. Leela
dc.contributor.author KISHORE, D. Ravi
dc.contributor.author KALYAN, M Pavan
dc.contributor.author SHANKAR, K Bhavani
dc.contributor.author KRISHNA, K Sai
dc.date.accessioned 2026-02-08T07:20:40Z
dc.date.available 2026-02-08T07:20:40Z
dc.date.issued 2026
dc.identifier.citation KUMARI, Ch. Leela; D. Ravi KISHORE; M Pavan KALYAN; K Bhavani SHANKAR and K Sai KRISHNA. Hybrid chaotic attractor recurrent network transnet architecture for accurate state of charge estimation of Li-Ion batteries in EV application. Problemele energeticii regionale. 2026, vol. 69, nr. 1, pp. 177-192. ISSN 1857-0070, eISSN 3082-1614. en_US
dc.identifier.issn 1857-0070
dc.identifier.uri https://www.doi.org/10.52254/1857-0070.2026.1-69.15
dc.identifier.uri https://repository.utm.md/handle/5014/35090
dc.description.abstract Main objectives of thestudy are to design and validate a novel state of charge (SoC) estimation framework for Lithium-Ion Batteries (LIBs) in Electric Vehicle (EV) Energy Storage Systems (ESSs), integrating the chaotic attractor recurrent network (CARN) with transformer techniques. This hybrid approach aims to overcome limitations in conventional battery management systems (BMSs), particularly in handling noisy inputs, long-range dependencies, and data imbalance. These objectives were achieved by implementing a structured methodology that incorporates data balancing to mitigate skewed datasets, exploratory data analysis (EDA) for anomaly detection and pattern recognition, and feature scaling for input normalization, thereby ensuring robust and effective model training. The hybrid classification model leverages the temporal pattern recognition capability of ARN alongside the strong attention mechanism of the Transformer, enabling superior adaptability under diverse operating conditions. Implemented in Python, the proposed method was rigorously tested across multiple scenarios to confirm its reliability and accuracy. The most important results are the reduced root mean square error (RMSE) of 0.9671, mean square error (MSE) of 0.9352, mean absolute error (MAE) of 0.793, and an enhanced R²-score of 99.86%, which collectively demonstrate significant improvements over conventional estimation techniques. The significance of obtained results lies in validating the proposed model’s ability to deliver highly accurate, robust, and real-time SoC prediction, thereby contributing to safer and more efficient battery management in EVs. This study highlights the potential of hybrid deep learning architectures to advance ESS safety, optimize energy utilization, and support sustainable electric mobility. en_US
dc.description.abstract Obiectivele principale ale studiului sunt proiectarea și validarea unui cadru inovator de estimare a stării de încărcare (SoC) pentru bateriile litiu-ion (LIB) din sistemele de stocare a energiei (ESS) ale vehiculelor electrice (EV), integrând rețeaua recurentă de atractori haotici (CARN) cu tehnici de transformare. Această abordare hibridă vizează depășirea limitărilor sistemelor convenționale de gestionare a bateriilor (BMS), în special înceea ce privește gestionarea intrărilor zgomotoase, dependențele pe termen lung și dezechilibrul datelor. Aceste obiective au fost atinse prin implementarea unei metodologii structurate care include echilibrarea datelor pentru a atenua seturile de date distorsionate, analiza exploratorie a datelor (EDA) pentru detectarea anomaliilor și recunoașterea modelelor, precum și scalarea caracteristicilor pentru normalizarea intrărilor, asigurând astfel o instruire robustă și eficientă a modelului. Modelul de clasificare hibrid utilizează capacitatea de recunoaștere a modelelor temporale a ARN împreună cu mecanismul puternic de atenție al Transformer, permițând o adaptabilitate superioară în diverse condiții de funcționare. Implementată în Python, metoda propusă a fost testată riguros în mai multe scenarii pentru a confirma fiabilitatea și acuratețea sa. Cele mai importante rezultate sunt reducerea erorii medii pătrate (RMSE) la 0.9671, a erorii medii pătrate (MSE) la 0.9352, a erorii medii absolute (MAE) la 0.793 șiîmbunătățirea scorului R² la 99.86%, care demonstrează în ansamblu îmbunătățiri semnificative față de tehnicile de estimare convenționale. Semnificația rezultatelor obținute constă în validarea modelului propus. en_US
dc.description.abstract Основными целями исследования являются разработка и валидация новой системы оценки уровня заряда (SoC) литий-ионных батарей (LIB) в системах хранения энергии (ESS) электромобилей (EV) путем интеграции рекуррентной сети хаотического аттрактора (CARN) с технологиями трансформатора. Этот гибридный подход направлен на преодоление ограничений традиционных систем управления батареями (BMS), в частности при обработке зашумленных входных данных, долгосрочных зависимостей и дисбаланса данных. Эти цели были достигнуты за счет внедрения структурированной методологии, которая включает в себя балансировку данных для смягчения искаженных наборов данных, эксплораторный анализ данных (EDA) для обнаружения аномалий и распознавания образов, а также масштабирование характеристик для нормализации входных данных, что обеспечивает надежное и эффективное обучение модели. Гибридная модель классификации использует способность ARN к распознаванию временных паттернов наряду с мощным механизмом внимания Transformer, что обеспечивает превосходную адаптивность в различных условиях эксплуатации. Реализованный на Python, предложенный метод был тщательно протестирован в нескольких сценариях для подтверждения его надежности и точности. Наиболее важными результатами являются снижение среднеквадратичной ошибки (RMSE) до 0.9671, средней квадратичной ошибки (MSE) до 0.9352, средней абсолютной ошибки (MAE) до 0.793 и повышение коэффициента R² до 99.86 %, что в совокупности демонстрирует значительные улучшения по сравнению с традиционными методами оценки. Значение полученных результатов заключается в подтверждении достоверности предложенной модели. en_US
dc.language.iso en en_US
dc.publisher Institutul de Energetica en_US
dc.relation.ispartofseries Problemele Energeticii Regionale, Nr. 1(69), 2026;
dc.rights Attribution-NonCommercial-NoDerivs 3.0 United States *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject lithium-ion batteries en_US
dc.subject management systems en_US
dc.subject data processing en_US
dc.subject baterii litiu-ion en_US
dc.subject sisteme de management en_US
dc.subject prelucrarea datelor en_US
dc.subject литий-ионные аккумуляторы en_US
dc.subject системы управления en_US
dc.subject обработка данных en_US
dc.title Hybrid chaotic attractor recurrent network transnet architecture for accurate state of charge estimation of Li-Ion batteries in EV application en_US
dc.title.alternative Arhitectură hibridă CARN-Transnet pentru estimarea precisă a SOC-ului bateriilor Li-ion în aplicațiile EV en_US
dc.title.alternative Гибридная архитектура Carn-Transnet для точной оценки уровня заряда литий-ионных аккумуляторов в электромобилях en_US
dc.type Article en_US


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States

Search DSpace


Browse

My Account