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Introduction

Most of the colloidal suspensions tend to adsorb proteins 
on their surface when they are inserted into a biological 
fluid, thus leading to the formation of a superficial layer of 
proteins known as protein-corona.1 The protein-corona can 
have a crucial impact on the stability of colloidal suspen-
sions, avoiding the agglomeration of nanoparticles (NPs) 
and controlling their active surface area, which determine 
the diffusion characteristics of NPs.2
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Abstract
The interaction of semiconductor nanoparticles with bio-molecules attracts increasing interest of researchers, considering 
the reactivity of nanoparticles and the possibility to control their properties remotely giving mechanical, thermal, or electrical 
stimulus to the surrounding bio-environment. This work reports on a systematic comparative study of the protein-corona 
formation on aluminum doped zinc oxide and gallium nitride nanoparticles. Bovine serum albumin was chosen as a protein 
model. Dynamic light scattering, transmission electron microscopy and X-ray photoelectron spectroscopy techniques 
have been used to demonstrate the formation of protein-corona as well as the stability of the colloidal suspension given 
by BSA, which also works as a surfactant. The protein adsorption on the NPs surface studied by Bradford Assay showed 
the dependence on the quantity of proteins adsorbed to the available sites on the NPs surface, thus the saturation was 
observed at ratio higher than 5:1 (NPs:Proteins) in case of ZnO, these correlating with DLS results. Moreover, the kinetics 
of the proteins showed a relatively fast adsorption on the NPs surface with a saturation curve after about 25 min. GaN NPs, 
however, showed a very small amount of proteins adsorbed on the surface, a change in the hydrodynamic size being not 
observable with DLS technique or differential centrifugal sedimentation. The Circular Dichroism analysis suggests a drastic 
structural change in the secondary structure of the BSA after attaching on the NPs surface. The ZnO nanoparticles adsorb 
a protein-corona, which does not protect them against dissolution, and in consequence, the material proved to be highly 
toxic for Human keratinocyte cell line (HaCaT) at concentration above 25 µg/mL. In contrast, the GaN nanoparticles which 
do not adsorb a protein-corona, show no toxicity signs for HaCaT cells at concentration as high as 50 µg/mL, exhibiting 
much lower concentration of ions leakage in the culture medium as compared to ZnO nanoparticles.
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Conclusions

A comparative study of the protein-corona formation on ZnO 
and GaN NPs was performed. It was found that BSA has 
strong affinity to ZnO NPs as compared to GaN nanoparticles 
in the same size range. The binding of proteins to the ZnO 
nanoparticles surface is demonstrated using DLS and TEM 
measurements. The binding results in a size increase by about 
14 nm in BSA:ZnO NPs (5:1 ratio), which correlates well 
with the thickness of a single layer of proteins on the surface 
of the NPs. On the other hand, GaN NPs size did not increase 
suggesting no corona formation. According to the CD analy-
sis, the ZnO NPs drastically influence the secondary structure 
of the proteins attached to their surface, thus affecting protein 
function. Furthermore, proliferation of HaCaT cells was 
influenced more drastically by ZnO NPs as compared with 
GaN NPs in the same conditions of incubation. The fact that 
a comparable cytotoxicity is seen in cells exposed to ZnO 
NPs (at concentrations higher than 25 µg/mL) and cells 
exposed only to solvent can be explained assuming the toxic-
ity to be caused by the release of toxic ions or by the combina-
tion of the release of ions and presence of the NPs. In contrast, 
GaN NPs were inert to the formation of BSA corona and 
showed good chemical stability in DMEM culture medium, 
demonstrating better biocompatibility in comparison to ZnO 
NPs under the same conditions and showing the cytotoxic 
effect only at concentrations above 70 µg/mL. These results 
are important for further development of NMs for biomedical 
applications implying NPs as active elements for sensors or 
platforms for drug delivery systems.
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