dc.contributor.author | BOBICEV, V. | |
dc.contributor.author | SOKOLOVA, M. | |
dc.date.accessioned | 2019-07-17T07:33:36Z | |
dc.date.available | 2019-07-17T07:33:36Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | BOBICEV, V. SOKOLOVA, M. Sentiment Analysis of User-Generated Online Content. In: Telecomunicaţii, Electronică şi Informatică: proc. of the 5th intern. conf., May 20-23, 2015. Chişinău, 2015, pp. 335-338. ISBN 978-9975-45-377-6. | en_US |
dc.identifier.isbn | 978-9975-45-377-6 | |
dc.identifier.uri | http://repository.utm.md/handle/5014/3585 | |
dc.description.abstract | This paper presents several experiments in the domain of automate text sentiment analysis. Comparison between machine learning (ML) and rule-based algorithms demonstrated that well-tuned rule-based methods obtain better results than general ML methods and it is necessary to use various types of features for obtaining satisfactory accuracy using ML algorithms. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Technical University of Moldova | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | natural language | en_US |
dc.subject | text analysis | en_US |
dc.subject | text sentiment analysis | en_US |
dc.subject | semantic lexicon | en_US |
dc.subject | machine learning | en_US |
dc.subject | limbaj natural | en_US |
dc.subject | analiza textului | en_US |
dc.subject | sentimente | en_US |
dc.subject | lexicon semantic | en_US |
dc.subject | învățarea mașinilor | en_US |
dc.title | Sentiment Analysis of User-Generated Online Content | en_US |
dc.type | Article | en_US |
The following license files are associated with this item: