DSpace Repository

The geometry of fractional tangent bundle and applications

Show simple item record

dc.contributor.author ALBU, Ion Doru
dc.contributor.author OPRIŞ, Dumitru
dc.date.accessioned 2021-10-11T12:32:15Z
dc.date.available 2021-10-11T12:32:15Z
dc.date.issued 2009
dc.identifier.citation ALBU, Ion Doru, OPRIŞ, Dumitru. The geometry of fractional tangent bundle and applications. In: Differential Geometry and Dynamical Systems: proc. of DGDS-2008, ed. 2, 29Aug. – 2 Sept., 2008, Mangalia, România, 2009, pp. 1-11. ISSN 1843-2859. en_US
dc.identifier.uri http://repository.utm.md/handle/5014/17678
dc.description.abstract The authors present the use of the revised fractional Riemann-Liouville derivative in the fractional tangent bundle of order k, TM ak, of a differential manifold M and the behavior of some objects under a change of local map. Among the geometrical structures defined on Tak M we consider the fractional connections and the fractional Euler-Lagrange equations associated to a function defined Tak M. Some examples are given. en_US
dc.language.iso en en_US
dc.publisher Geometry Balkan Press en_US
dc.rights Attribution-NonCommercial-NoDerivs 3.0 United States *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Riemann-Liouville calculus en_US
dc.subject bundles en_US
dc.subject geometrical objects en_US
dc.subject Euler-Lagrange equations en_US
dc.subject equations en_US
dc.title The geometry of fractional tangent bundle and applications en_US
dc.type Article en_US


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States

Search DSpace


Advanced Search

Browse

My Account