dc.contributor.author | ALBU, Ion Doru | |
dc.contributor.author | OPRIŞ, Dumitru | |
dc.date.accessioned | 2021-10-11T12:32:15Z | |
dc.date.available | 2021-10-11T12:32:15Z | |
dc.date.issued | 2009 | |
dc.identifier.citation | ALBU, Ion Doru, OPRIŞ, Dumitru. The geometry of fractional tangent bundle and applications. In: Differential Geometry and Dynamical Systems: proc. of DGDS-2008, ed. 2, 29Aug. – 2 Sept., 2008, Mangalia, România, 2009, pp. 1-11. ISSN 1843-2859. | en_US |
dc.identifier.uri | http://repository.utm.md/handle/5014/17678 | |
dc.description.abstract | The authors present the use of the revised fractional Riemann-Liouville derivative in the fractional tangent bundle of order k, TM ak, of a differential manifold M and the behavior of some objects under a change of local map. Among the geometrical structures defined on Tak M we consider the fractional connections and the fractional Euler-Lagrange equations associated to a function defined Tak M. Some examples are given. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Geometry Balkan Press | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Riemann-Liouville calculus | en_US |
dc.subject | bundles | en_US |
dc.subject | geometrical objects | en_US |
dc.subject | Euler-Lagrange equations | en_US |
dc.subject | equations | en_US |
dc.title | The geometry of fractional tangent bundle and applications | en_US |
dc.type | Article | en_US |
The following license files are associated with this item: