DSpace Repository

The geometry of fractional osculator bundle of higher order and applications

Show simple item record

dc.contributor.author ALBU, Ion Doru
dc.contributor.author NEAMŢU, Mihaela
dc.contributor.author OPRIŞ, Dumitru
dc.date.accessioned 2021-10-11T12:15:20Z
dc.date.available 2021-10-11T12:15:20Z
dc.date.issued 2007
dc.identifier.citation ALBU, Ion Doru, NEAMŢU, Mihaela, OPRIŞ, Dumitru. The geometry of fractional osculator bundle of higher order and applications. In: arXiv:0709.2000v1, 2007, p 1-20. en_US
dc.identifier.uri http://repository.utm.md/handle/5014/17677
dc.description.abstract Using the reviewed Riemann-Liouville fractional derivative we define the bundle Eak= Oscak(M) and highlight geometrical structures with a geometrical character. Also, we introduce the fractional osculator Lagrange space of k order and the main structures on it. The results are applied at the k order fractional prolongation of Lagrange, Finsler and Riemann fractional structures. en_US
dc.language.iso en en_US
dc.publisher Cornell University en_US
dc.rights Attribution-NonCommercial-NoDerivs 3.0 United States *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject geometrical structures en_US
dc.subject bundles en_US
dc.title The geometry of fractional osculator bundle of higher order and applications en_US
dc.type Article en_US


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States

Search DSpace


Advanced Search

Browse

My Account