dc.contributor.author | ALBU, Ion Doru | |
dc.contributor.author | NEAMŢU, Mihaela | |
dc.contributor.author | OPRIŞ, Dumitru | |
dc.date.accessioned | 2021-10-11T12:15:20Z | |
dc.date.available | 2021-10-11T12:15:20Z | |
dc.date.issued | 2007 | |
dc.identifier.citation | ALBU, Ion Doru, NEAMŢU, Mihaela, OPRIŞ, Dumitru. The geometry of fractional osculator bundle of higher order and applications. In: arXiv:0709.2000v1, 2007, p 1-20. | en_US |
dc.identifier.uri | http://repository.utm.md/handle/5014/17677 | |
dc.description.abstract | Using the reviewed Riemann-Liouville fractional derivative we define the bundle Eak= Oscak(M) and highlight geometrical structures with a geometrical character. Also, we introduce the fractional osculator Lagrange space of k order and the main structures on it. The results are applied at the k order fractional prolongation of Lagrange, Finsler and Riemann fractional structures. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Cornell University | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | geometrical structures | en_US |
dc.subject | bundles | en_US |
dc.title | The geometry of fractional osculator bundle of higher order and applications | en_US |
dc.type | Article | en_US |
The following license files are associated with this item: