

S1-P.22

Superconductivity and Weak Ferromagnetism in Inclination Bicrystal Interfaces of Bismuth and Antimony

F.M. Muntyanu¹, K. Nenkov², A.J. Zaleski³, and V. Chistol⁴

Using Quantum Design SQUID magnetometer and Physical Property Measuring System (PPMS), we studied the magnetic and superconducting properties of high-quality inclination crystallite interfaces (CIs) of bicrystals of Sb and Bi. It was found that the CIs with a higher carrier density than single crystalline samples exhibit a superconducting transition with respectively $T_{\rm c} \leq 10~{\rm K}$ for Sb and $T_{\rm c} \leq 21~{\rm K}$ for Bi interfaces; the Sb CIs also manifest ferromagnetic hysteresis loops against a paramagnetic background, thereby indicating occurrence of superconductivity and weak ferromagnetism.

¹ Institute of Electronic Engineering and Nanotechnologies, Chisinau, Moldova

² Leibniz-Institut fur Festkorper und Werkstofforschung, Dresden, Germany

³ Institute of Low Temperatures and Structural Research, Polish Academy of Sciences, Wroclaw, Poland

⁴ Technical University of Moldova, Chisinau, Moldova