

Microelectronics and Computer Science, 2005, Chişinău, Republic of Moldova

 288

AN ALGORITHM FOR SYNTHESIZING A LOGIC DATABASE SCHEMA

Vitalie Cotelea

A.S.E.M. Chişinău

Abstract. An improved algorithm for synthesizing a database schema is considered. The schema

that results from this procedure is proved to be in Codd’s third normal form and to possess lossless-

join property. It produces result even though some of the universal schema’s attributes are not

implicate in functional dependencies.

Keywords. Database schema, third normal form, functional dependency

An improved algorithm for synthesizing a logic database schema in third normal form proposed by

Philip A. Bernstein [1] is presented. The principal problem generated by Bernstein algorithm is that

the result schema doesn’t always possess lossless-join property. Besides this the algorithm can be

applied only in the case when all the attributes of the universal schema are implicated in functional

dependencies.

The main idea of improvement consists in the fact that to the set of functional dependencies one

more dependency is added. Its left side is the universal schema and the right side is an artificial

attribute which doesn’t exists in the universal schema. This attribute disappears in the course of

further algorithm development but the mentioned problems are solved.

The described algorithm is a synthesizing procedure because it starts from the set of functional

dependencies F defined on the universal schema R and produces database schema BD={R1,...,Rm},

where R=R1...Rm, grouping the dependencies F so as to satisfy the following four conditions:

(1) FR1(F)… Rm(F), where Ri(F)={XY | XRiF+};

(2) BD is in third normal form;

(3) BDj, |BDj||BD|;

(4)  r(R), r=R1(r) ...Rm(r).

Condition (1) assures that the projections of relation r on schema BD conserve F. Moreover,

condition (1) informs that Ri, 1im, satisfies dependencies whose determinants are superkeys

of scheme Ri.

Computer science

 289

Condition (2) is the goal of normalization. Its necessity was studies in detail in [2].

Condition (3) guaranties that any other schema built on the set F doesn’t contain fewer relational

schemes.

Condition (4) affirms that the database schema has lossless-join property.

To describe the algorithm the notation ATR(F) which presents the set of attributes involved in

dependencies F will be used, i.e.

ATR(F)={V | V=XY  XYF}.

For example, if F={CE,EA,CED,AB}, then . ATR(F)={A,B,C,D,E}.

To the set F of functional dependencies the dependence R is added. This fact imposes the result

schema to possess lossless-join property and all universal schema attributes to be involved.

FN3_SYNT Algorithm

input:
 R: universal schema

F: the set of functional dependencies on R

output:

BD={R1,…,Rm}: a database schema in third normal form
witch a minimal number of relational schemes and which
possesses lossless-join property and conserves the
functional dependencies F

begin

 BD:=;

J:= ;

1

2

F:=F{R};

G:=CANON(F);

3

4

E:=CLASE_ECHIV(G);

if |EG(R)|1 then EG(R):= EG(R)\ {X};

5 for each EG(X)  E do

 for each XA YB  EG(X) do {aici XA YB}

 Ej(X):=Ej(X) { XY, YX};

6 for each EG(X)  E do

begin

 for each XA  EG(X) do

 if MEMBRU(E\{EG(X)}{ EG(X) \{XA}}J, XA)
then EG(X):= EG(X) \{XA};

Microelectronics and Computer Science, 2005, Chişinău, Republic of Moldova

 290

 EG(X):= EG(X) Ej(X);

 end

7 for each EG(X)  E do

 if ATR(EG(X)) then BD:=BD  {ATR(EG(X)) \ {}}

 else BD:=BD  {ATR(EG(X))};

 return (BD);

end.{ FN3_SYNT}

A description of synthesizing database schema algorithm is given.

Step 1 adds to the initial set of functional dependencies F the functional dependency R, where

the determinant is the universal attribute set and the determinat is an attribute doesn’t belong

to the field of interest. The aim of including of this artificial dependency is to elaborate a

database schema which possesses the lossless-join property.

Step 2 builds a canonical cover of the set F (a set is canonical if it’s nonredundant, left reduced and

the right sides of the dependencies are single attributes). At this stage the foundation of the

database schema with the minimal relation schemes and sets of keys for these schemes is

built.

Step 3 divides the canonical set of functional dependencies G into classes of equivalence (an class

of equivalence is a set of functional dependencies with equivalent left sides).

Step 4 verifies if the functional dependency with artificial attribute  is placed into a class with

other functional dependencies. In the affirmative case the dependency with  attribute is

eliminated from the respective class.

Step 5 builds a set J of functional dependencies in the following way. At the beginning J= is set,

then J is modified for each two different functional dependencies with X and Y determinants

(where XY) from EG(X) as follows Ej(X):=Ej(X) { XY, YX}.

Step 6 eliminates transitive dependencies of nonprime attributes. A set E1E, which satisfies

(E1J)(EJ) is found, so as none proper subset of set E1 doesn’t satisfy the given condition.

Then the dependencies from J are included into respective classes of equivalence of set E1.

Step 7 forms the relational schemes R1,...,Rm. Each scheme Ri includes the attributes involved by

the functional dependencies from the i class of equivalence. At the end the database schema

BD={R1,...,Rm} is obtained. At the same time, if the artificial attribute  is a part of a

relational scheme Ri then it is dropped from this scheme.

Computer science

 291

It is necessary to mention that algorithm for synthesizing database schema in Codd’s third normal

form has a polynomial temporal complexity. Moreover it builds a schema with a minimal number of

relational schemes.

Theorem. If BD is the database schema synthesized from set F, then BD contains |EG| relational

schemes.

Proving. The applied dependencies for Ri (1im) relational scheme construction have

equivalent determinants, i.e. they forms a class of equivalence. Therefore BD contains so

many relational schemes as in how many classes of equivalence the set G is divided. But as

the schema is canonical, i.e. and nonredundante then there doesn’t exist a set equivalent to it

with fewer classes of equivalence. The proving is evident

This theorem confirms that the synthesizing algorithm satisfies the condition (3).

Condition (1) is respected because E  EJ and E is G divided in classes of equivalence and G F.

Condition (2) is satisfied by step 6 of the algorithm that excludes transitive dependencies.

The inserting of the artificial dependency R in set F makes synthesizing algorithm to generate

the schema, which has the losless-join property, which satisfies condition (4). Besides the R

dependency links the attributes which eventually are not involved into initial set of functional

dependencies F.

Here the lossless-join property is assured by the universal key introduced into database schema

together with R. dependency (naturally if this key doesn’t exist).

Definition. Let BD={R1,...,Rm} be a database schema, where R=R1...Rm, and let F be a set of

functional dependencies on R. The set KR is called database universal key if F|=KR and

doesn’t exist K1, where K1K, that satisfies F|=K1R.

Theorem. Let R be a relational scheme and F - a set of functional dependencies on R. Let BD be a

decomposition of the scheme R. Then database schema BD:=BD{K} is a lossless

decomposition of scheme R.

Proving. The proving is evident because the tuple represented by the universal key in

decomposition tableau is a goal tuple (which consist of distinct variables only).

Therefore the adding of R. dependency to F really introduces the universal key. Without this

dependency the synthesizing algorithm doesn’t always generate a database schema which possesses

losslees-join property

Microelectronics and Computer Science, 2005, Chişinău, Republic of Moldova

 292

It is necessary to mention that this idea can be extended to each user view so as they possess the

lossless-join property. With this aim, for each Vi user view a dependency Vi.i is added to the

initial set F.

REFERENCES:

1. Philip A. Bernstein. Synthesizing Third Normal Form Relations from Functional
Dependencies. ACM Transaction on Database Systems, Vol.1, No.4, 1976, p.277-298.

2. Codd, E.F. Further normalization of the database relational model. In Database Systems,
Courant Inst. Comptr. Sci.Symp. 6, R.Rustin, Ed., Prentice-Hall, Englewood Cliffs, 1972,
p.33-64.

