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1. INTRODUCTION 

 

Solar cells based on the thin film technology 

are important candidates for photovoltaic 

industry. One of the significant techniques for 

the device characterization is current versus 

voltage. Forward current, in many cases, can be 

described by exponential dependence with exponent index 

nkTqV / , where n is the so-called “ideality" factor lied in 

the range 1 to 2. Such simple formula does not cover the 

observed variety of experimental I-V characteristics of 

MOS structures. The measured I-V characteristics of MOS 

structures and their evolution at the temperature variation 

are governed by the thermionic-emission-diffusion Sze-

Crowell theory [1,2]. But frequently experiment 

gives 2n . To construct the theory one has to put into 

the consideration a number of simplifying assumptions. 

Here we consider an implication of difference kinetic 

theory, suggested in the reference [3], which, in a sense, 

allows us to consider of the validity of some theoretical 

assumptions. We discuss our analysis of basic equations for 

semiconductor-device operation in relation to other 

theoretical approaches. 

 Analysis of carrier’s behavior under influences of 

applied electric field is described by the basic equations 

which include the Poisson equation, continuity equations 

and current-density equations. With account of drift and 

diffusion according to the both Ohm’s law and Fick’s law 

we have 

dx

xdn
qDxExnqxj nn

)(
)()()(    (1) 

where )(xE  is the intensity of the field, )(xn  is the 

concentration, nD is the diffusion coefficient, )(xj  is the 

current density, x is coordinate and q is the charge of 

electrons. According to the Einstein relation valid for the 

nondegenerate semiconductors we have qkTD nn / . 

Here n is the mobility, T is a temperature of device. It is 

well known that equation for current density (1) can easily 

be deduced by using of the classical Boltzmann equation 

solution in approximation of relaxation time ),( xkx  
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Here m is the effective mass of electrons, )( xe kn  is the 

equilibrium distribution function. Other designations are 

standard. At small field intensities )(xne  is the 

thermodynamic equilibrium concentration of electrons and 

1),( xkxf . If one wants to investigate high field transport  

one may introduce the mobility depending of )(xE [4]. We 

consider nonlinear current-voltage characteristics by means 

of concentration )(xn  as function of arbitrary field 

intensity )(xE . For semiconductor with depletion layer in 

the region of Schottky barrier distribution function can be 

represented in the form  

),(),(),()()(),( 1

xxxex kxTVxAkxfknxnkxn   (3) 

Here ),( xkxT  is the barrier-transmission coefficient, 

A(x,V)- normalizing factor, which can be determined from 

the equation for total number of electrons N  
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where S-surface area, d-thickness of the semiconductor. In 

the neutral region 1),(,1),(  xkxTVxA . Quantum 

transmission coefficient ),( xkxT  can be calculated having 

applied the Wentzel–Kramers–Brillouin approximation for 

depletion region. On condition ExU )( one gets 
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If the inequality ExU )( is valid we have 
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Here )(xU is the potential and E is the total energy, )(x is 

the mean free path of carriers. As the simple approximation 

the probability of electron emission over Schottky barrier is 

given by  /exp),( xkxT x  (5). 

The dependence of the normalizing factor ),0( VA  

on the applied voltage V  is visualized in Fig.1. 

  
Insert shows that the value of ),0( VA  varies 

significantly from  101.66 -13  at 0V  up to 1.4 at 

67.0V V, such that one obtains very incorrect estimates 

of concentration )(xn if one ignores the factor ),0( VA  

variations and takes 1),( VxA . 

It is common practice to assume the tunneling current 

proportional to the quantum transmission coefficient 

),( xkxT  multiplied by the equilibrium distribution 

function )( xe kn . In that case tunneling current is considered 

as additional quantum correction to the classical current, 

represented by the equation (1). It is not consistent theory if 

one has to remember what term he lost. We determine 

current density by the next equation 
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where transmission coefficient is included into distribution 

function ),( xkxn  (3) as multiplier. One would think that it 

is only the question of preferences. It is not so. Current 

density in depletion region is not the sum of tunneling, 

thermionic-emission and diffusion one from equation (1). 

We only have to know distribution function  ),( xkxn  (3) to 

calculate current density (7) without any assumption.  

    II. QUANTUM MECHANICAL PLROBLEM 

ANALYSIS 

To arrange our proofs that solution for distribution 

function can be represented in the form (3) we turn to 

account method of difference kinetic equations [3] 

considering discrete phase space by means of plane 

wavelets representation 
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Plane wavelet function xKX ,  (8) is determined on the 

interval  )2/,2/ xx dxdx  . Position X  and momentum xK  

are quantized according to equation 
xxx

x

x mdXn
d

K  ,
2

, 

where  ,...1,0xn ,   2/12/..1,0  xx ddm  are integers. 

The set of plane wavelet orthonormal functions xKX ,  (8) 

is complete [3] and can be used as the second quantization 

basis allowing introducing the positively definite 

distribution function. The phase space model according to 

which dynamical variables kpr ,  specify the state of a 

classical system gives classical description (1) without 

accounting of effect of tunneling. For quantum systems a 

simultaneous specification of coordinates r  and momenta 

p  is not possible in view of Heisenberg uncertainty 

relations. A quantum mechanical description consists of a 

Hilbert space of states. According to the correspondence 

principle, the laws of quantum mechanics must reduce to 

those of classic in the limit where   tends to zero. This 

fundamental requirement views the equations of classical 

mechanics as limit of the Schrödinger equation. 

Analogously Boltzmann equation can be derived from the 

Schrödinger evolution of interacting particles. But classical 

description of homogeneous system is just the same as the 

quantum description if one uses a plane-waves 

representation. Thus some of the Boltzmann equation 

driving terms may be derived from the quantum 

mechanical many-body analysis for expectation value of 

microscopic polarization  


 )()()( tatatP kkkk  by making 

use a plane-waves representation in a fairly direct way in 

terms of creation 


ka  and destruction ka  operators. In such 

a manner account of particles interaction with 

homogeneous electric field E  leads to the drift term, 

represented in the form (2). But it is much more difficult to 

take into consideration the dependence of distribution 

function on position of particles which can not be 

considered in a plane-waves representation In order to 

develop kinetic theory with simultaneous listing of 

coordinates and momenta one has to introduce Wigner 

representation [5,6]. Wigner distribution function is derived 

from Greens function using the Wigner transform, which is 

 
Fig.1. The computed normalizing factor )(VA  is 

shown as function of applied voltageV  . Equation (4) 

is solved for a model with d=0.1 mm wide ZnSe 

semiconductor. For the calculation a temperature of 

300 K, mobility 053.0n cm
2
/V-s, 10/)0(  ,  

32110  mND and effective mass 02.0 mmn   are used. 
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Fourier transform, with respect to the relative coordinate. 

This technique is useful in the systems that are not 

homogeneous. Wigner distribution function is reduced to 

classic Boltzmann function in the limit where   tends to 

zero. But for many Hamiltonians of interest Wigner 

distribution function is not positive definite and hence can 

not be interpreted as a probability density. We will use 

difference kinetic equation for microscopic polarization 

)(tP kk  given by the equation 
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which has been derived explicitly quantum mechanically 

[3] in a plane wavelets representation (8) with account of 

two-particle correlations. The set of ket vectors (8) was 

used as the second quantization basis allowing introducing 

the positively definite distribution function, which  can be 

considered at kk   as density of particles of 

inhomogeneous system described by numbers of particles 

at quantized positions with quantized momenta. Difference 

kinetic equation for distribution function transforms into 

the classical Boltzmann equation in the limit, where 

expectation value of particles number varies little in 

xdX   and xx dK /2 . Using plane wavelets 

representation one gets for current density expression          
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If the microscopic polarization kkkk PPP 


   varies little in 

xdX   and 
xx dK /2  equation (10) transforms at 

kk   into the next one 
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Second term in equation (11) has the form of the 

probability current and has no analog in classical theory. 

Indeed, using the same approximation we have for 

kP kinetic equation which includes Schrödinger equation in 

the form  
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Equation (12) shows that  tunneling effect is described 

along with thermionic emission, drift in electric field and 

diffusion in the united approach for which one has to know 

nothing else but the solution of difference equation for 

microscopic polarization )(tP kk   (9, 12). We will resolve 

the transport problem by means of distribution function in 

the form (3). 

III. NUMERICAL RESULTS AND DISCUSSION  

Inserting ),( xkxn (3) into the equation for current 

density (7) and evaluating integral over xk we obtain for 

current density at the metal-semiconductor interface 0x   

the result 

 ),0(),0()0(
4

1
)0( 1



 VFVAvqnj T  (13) 

Here   dVVV . dV  is the parasitic voltage drop  due 

to series resistance of neutral region. Function ),0( VF is 

determined by the equation 
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Figure 2 depicts the main qualitative features of 

numerical results for function ),0( VF . In the limit where 

applied voltage tends to zero function 0),0( VF  . The 

value of function ),0( VF  varies from zero up to 7 .  It can be 

shown that in the limit, where only thermionic current is 

taken into account one gets the well-known expression 

)1)/)(exp(/exp(),0(  kTqVkTqVVF bi . Here biV is 

the built-in potential. 

 
 Considering neutral region, where expression for current 

density (1) is valid, we obtain the dependence of 

concentration on coordinate  is represented by the equation 
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Where )()(),( xxxxu   . Electric potential )(x  is 

determined by the distributions of electrons and shallow 

impurities according to the Poisson equation. In the 

depletion layer formula (15) is no longer valid. The 

approach [2] has been derived from the boundary condition 

near the metal-semiconductor interface, where equation 

(15) fails. In the neutral region potential )(x  is the linear 

function of x, accordingly 

  dn VdEddndEqdj )()(),()()(    (16) 

Equation of continuity )()0( djj   can be easily 

resolved in the limit, where applied voltage 0V  and 

Vj )0( . In view of   dVVV one gets at arbitrary 

applied voltage expression for current density 
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Further analytical expression for the above equation is 

difficult, and the results can be obtained by numerical 

 
Fig.2. Calculated voltage-dependent function 

),0( VF  for MOS structure. For the calculation the 

values of semiconductor’s parameters given in the 

Fig.1 capture are used. 
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calculation. Some of the parameters of theory expressed by 

the Eq.(17) TNdmV Dnnbi ,,,,,  are well established, 

others such as relaxation time ,/)( qmd nn   at the 

semiconductor surface  dx   and )()( dvd T   , dd 2/)(  

can be calculated. But effective width of barrier Schottky 

  and relaxation time )0( can be only estimated. Figure 

3 displays the I-V characteristics computed by using 

different values of parameter /)0( , where Tv)0()0(    

is the mean free path of electrons at the interface 0x . 

Calculated values of typical current-voltage characteristics 

show that in the region of small electric field  1.0V V 

current reaches its maximum if parameter 4.14/)0(  . 

At high voltage 1.0V V the ratio ),0(/),0( VFVA  do not 

depend on parameter /)0( , therefore all curves showing 

in the Fig.3 merge into one. But at a fixed value of /)0(  

and different dd /)(  a curves )(Vj at 1.0V V depend on 

parameter dd /)( according to Fig.4. If applied voltage is 

in the range  0.5V >V > 0.1V the current density obey the 

exponential dependence onV due to the Boltzmann 

distribution and ideality factor at 0.5V >V > 0.1V is equal  

approximately to one 1n .  

 

  
As it is clear from figures 5 and 6 the magnitude of 

)(Vn increases with increasing ofV at small V . Then at 

0.4V >V > 0.1V the value of )(Vn reaches 1n . In the 

region of high voltage 4.0V V )(Vn increases again. This 

effect is visualized in Fig.6. The value of V at which I-V 

characteristics acquire an ohmic nature is shifted to the 

smallerV as parameter dd 2/)( decreases.  

 
We can conclude that it is possible to phenomenologically 

 
Fig.4. Same as Fig.3,  but in the high electric field 

4.0V V for 4/)0( 0.1. and dd 2/)( : 1-0.0004, 2-

0.0016, 3-0.0036, 4-0.0064, 5-0.01, 6-0.0144, 7-0.0196, 

8-0.0256. 

    Fig.5 and 6 are a plots of ideality factor n  versus V . 

 
Fig.3. Theoretical I-V characteristics of different 

MOS structures for 008.02/)( dd . The curves are 

obtained assuming simple rectangular barrier model 

with incising parameter 4/)0( 0.0001, 0.02, 

0.06, 0.12, 0.24, 0.4, 0.65, 1, 1.5, 2, 3, 4, 5. 

Fig.  
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Fig.5. Ideality factor )(Vn calculated with using of 

Eq.(17) at different values of 4/)0(  1-0.2, 2-0.15, 

3-0.1, 4-0.05, 5-0.01, 6-0.0001 and 008.02/)( dd . 

Fig.  
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adjust the parameters of the theory, Eq.(17), to reproduce 

the main signatures of the results for the I-V characteristics 

of Schottky barrier diodes. 
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