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I. INTRODUCTION 

In all multimedia systems a central part of the system is the block of compression algorithms 

responsie for an important reduction of the data amount. The compression have to be performed 

with a minimum numbers of errors. 

Let us take a look at an illustrative example. If a video frame has a resolution of 288 by 352 

(288 lines and 352 pixels per line) in CIF (Common Intermediate Format) format, each of the three 

primary colors (red, green and blue) is represented for one pixel with eight bits and the frame rate of 

transmission is 25 frames per seconds, then the bit rate is 288 x 352 x 8 x 25 = 20,275,200 bps. In a 

video transmission with a modem which operates at a maximum bit rate of 56,600 bits per second it 

is necessary to reduce the video data amount by at least 359 times. If we desire a better resolution 

for the video frame the amount of data grows about ten times. 

 All the video compression algorithms perform the transform coding in three steps. In the 

first step the image (frame) are divided into blocks for each component. This step is known as 

preprocessing operation. In the next step a particularly linear transform is performed for each block. 

Finally, in the last step the transformed signal is truncated, quantized and encoded. 

 The studies of the two-dimensional transforms presented in this paper were realized in order 

to obtain a clear and concise synthesis of multimedia video compression algorithms. These 

researches of the two-dimensional transforms used in image processing were finalized with 

publication of a book [8] for the students and Ph.D. students. 

 

II. DISCRETE TWO-DIMENSIONAL WAVELET TRANSFORM 

For the begining let us consider the orthogonal case and one-dimensional case. The algorithm 

allows a fast computation of the finite energy signals projections on different subspaces as the  

elements of an orthogonal multiresolution analysis [2],[10],[12]. 
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 The totality of the closed Hilbert spaces (subspaces of  RL2 ) 
ZmmV


 forms a 

multiresolution analysis of  RL2  space if its elements satisfy the following conditions: 
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and there is   0Vt   such that    Znnt   forms a Riesz base of 0V  space         (5) 

 The function  t  is named the scale function. Taking into account that 10 VV  , it results 

that there is a numbers sequence  Zlhk
2  such that 
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 The space jW  is built as a complement of the jV  space into 1jV  space and it satisfies the 

condition:            jjj WVV 1                                                       (7) 

Because  t  is an element of the 1V  space  10 VW   and  
Zkk ,1  is a Riesz base of 1V , there 

is a sequence  Zlgk
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 Using the definition of the multiresolution analysis it can be demonstrated that if 

   Zkkt   is an orthogonal base of 0V  then the functions set   
Zkjkj t

,,  defined in the same way: 
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form an orthogonal base for jV . 

The same steps are performed for the wavelet function  t . If the function set    Zkkt   is 

an orthogonal base for 0W , then the functions set   
Zkjkj t

,,  defined in the same way: 

   ktt j

j

kj  22 2
,                                                  (10) 

forms an orthogonal base for  RL2 . 

 Let us denote by jP  the projection operator on jV  space and by jQ  the projection operator 

on jW  space. Consequently, both operators are orthogonal projection operators and that implies: 
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Using these two last results and taking into account that  RLW j
j

2  a function    RLtf 2  

can be written: 
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 The sequences  kh  and  kg  represent the impulse responses of two digital filters. Theirs 

Fourier transforms have to fulfil the following conditions: 
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A particular case of the above conditions leads to a time domain relation as follows: 

  k
k

k hg  11                                                        (15) 

that is specific to the quadratic filters. 

According to (12) we may write: 
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where: 
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 The sequence: 
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will be named the discrete approximation of  tf . 

Using the decomposition relations of the signal  tf  into the subspace 1jV , according to 

the previous discussions we obtain: 
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 According to the two-scale equation (6), the scalar products from (19) may be rewrite 

according to the above notations: 

     nktth nk 2, 12                                            (20) 

 Therefore, equation (19) becomes: 
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 Denoting by nkkn hh 22  


 the mirror filter of kh , then the previous relation can be 

rewritten as follows: 


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                                              (22) 

The equation (22) shows that nja ,  can be computed from nja ,1  by using the nh


 filter, 

followed by a two-factor decimation. 

Similarly, the orthogonal projection of  tf  function on jW  space will be computed. 

Denoting by fQ j  the projection operator on jW  space we may write a similar relation to (16), 

using the   
Znnj t

,  base on this space: 
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where: 

    ttfd kjkj ,, ,                                                   (24) 

 In the same way the set: 
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
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is called discrete detail signal. 

Similarly, it can be proved that: 
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Denoting by nkkn gg 22  


 the mirror filter of kg , then the previous relation can be rewritten 

as follows:                                                  
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The equation (27) shows that njd ,  can be computed from nja ,1  by using the ng


 filter. 

Because the original signal  tf  is considered at resolution  0120  j  then na ,0  is the discrete 

approximation of the original signal at resolution 1. This is exactly the discrete-time signal  nf . 

Hence, the set of values: 

  
1,, ,
 jJnjnJ da                                                 (28) 

represents the fast discrete wavelet transform of the na ,0  discrete signal. The values from (28) are 

computed as follows:                                                                       
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 In two-dimensional case three wavelet functions can be constructed: 
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  with the one-dimensional case we can obtain the three discrete detail signals corresponding 

to the three wavelet functions: 
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 In this way the collection: 
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are called discrete two-dimensional wavelet transform.  

 In the extended form of this abstract some results of applications will be presented. 

 

II. CONCLUSIONS 

This paper is an overview of discrete wavelet transform. In the latest years spectacular 

results of the wavelet theory were obtained in image compression and image analysis. Some of the 

algorithms based on this type of analysis were included on the last generation of JPEG and MPEG 

standards. 
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