
Computer science

NEURON DYNAMICAL MODELS AND OPTIMAL PREDICTION 

Victoria Boghanastjuk,  Nicolae Kobileatzky ,Călin Marian, Olesea Berdaga,  Alexei Tonu, 
Alexandru Larchencov, Eugen Alexeienko, Liliana Erhan 

Technical University of Moldova, Department of Automation,
Stefan cel Mare av., 168, MD 2004, Chisinau, Republic of Moldova

E-mail: boghan1@yahoo.com

Abstract.  This paper describes a new approach to informational technological system the

mathematical  Hopfield  model  is  derived  for  the  dynamic  terminal  expansion  of  the  content

addressable memory in dynamic systems. The model structure has been specifically designed to

facilitate  control  studies.  This  a  real  –  time  temporal  supervised  learning  algorithm leads  to  a

system. 
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INTRODUCTION

The interest system for possess four general characteristics:

1. A large number of degrees of freedom. The human cortex is a highly parallel distributed system

that is estimated to possess about 10 billion neurons, with each neuron modeled by one or more

state variables. It is generally believed that both the computational power and the fault – tolerant

compatibility of such a neuron dynamical system are the result of the collective dynamics of the

system.

2.  Dissipation.  A neuron dynamical  system is  therefore chracterized by the convergence of the

phase – space volume auto a manifold of lower dimensionality as time goes on Noise.

Consider the noiseless dynamical model of a neuron shown [1, 2]. The inputs applied to a

output  resistance.  The  main  objective  of  this  paper  is  to  supply  the  solution  of  the  prediction

problem for neuron dynamical models with periodic coefficients. The notion of minimum – phase

neuron dynamical models is introduced. It is shown that the prediction rule for this model can be

given   a simple input/output from which generalizes the well known time – invariant prediction

formulas [2, 3]. In the no minimum – phase case, the solution of the prediction problem call for a

suitable  Nation  of  canonical  representation  of  the  cycle  stationary  process  associated  with  the

original neuron dynamical models [3]. 

The error signal (fig.1.) at the output of neuron j at iteration n is defined by 

Ej(n)=dj(n)-yj(n).                         (1)
Neuron j is an output node.  
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NEURON DYNAMICAL MODELS

The instantaneous sum of squared errors of the network is written as 
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where the set C includes all the neurons in the output layer of the network. The average squared

error is obtained by n summing E(n) over all n and then normalizing with respect to the set size N,

as show by 





N

n
n nE

N
e

1

)(
1

.                          (3)

 

Fig.1.The details of output neuron j
The net interval activity level vj(n) produced at the input of the nonlinearity associated this neuron j

is therefore (fig.2.) 
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where p is the total number of input,    wij - the synaptic weight and 
yj(n)=j(vj(n)).                      (5)

Fig. 2. A dynamic model of a neuron, with each synapse consisting of a time – varying delay
followed a time – varying weight

The back-propagation algorithm applies a correlation  nw ji  to the synaptic Weight  nw ji

which is proportional to the instantaneous gradient   )(nwn ji . The gradient    )(nwn ji

represents a sensitivity factor, determining the direction of search in weight space for the synaptic
weight jiw . Differentiating (2), (1), (4) with respect 0t      nVnyne jjj ),(,  it get
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where the use of prime signifies differentiation with respect to the argument. Finally 
differentiating (3) with respect to  nw ji  yields 
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The correction  nw ji  applied to  nw ji  is defined by the delta rule
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                ,nynnw ijji                                                                                (9)
where   is a constant that determines the rate of learning; it is called the learning-rate parameter of
the back-propagation algorithm,       nvnen jjjj    is local gradient. 
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Fig.3. Architectural graph of a two- neuron recurrent network
          

REAL- TIME RECURRENT NETWORKS

The back propagation through time for training a recurrent network is an extension of the

standard back propagation algorithm. It may be derived by unfolding the temporal operation of the

network into a multilayer feed forward network, the topology of which grows by one layer at every

time a step (fig.3).. Let no denote the start time of an epoch and n1 denote its end time. Given this

epoch, it may define the cost function 
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where  A is  the  set  of  indices  j  pertaining  to  those  neurons  in  the  network  for  which  desired

responses are specified , and ej(n) is the error signal at output of such a neuron measured It wish to

compute the partial derivates of the cost function ),( 10 nntotal with respect to synaptic weights of

the network. The epoch wise back-propagation-through-time algorithm is described as follows:

1. A signal forward passes of the data though the network for the interval [n0, n1] is performed.

The complete record of input data, network state and desired responses over this interval is

saved.

2. A signal backward passes over this past record is performed to compute the values of  the

local gradients  
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for all jA and n0<nn1 by using the equations : 
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where  (.)' is the derivative of an activation with respect to its argument. The number of steps
involved here is equal to the number of time steps contained in the epoch.

3. Once  the  computation  of  back  propagation  has  been  performed  back  to  time  n0+1  the
following adjustment is applied to the synaptic weight wji of neuron j:
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where  is the learning rate parameter and xi(n-1) is the i-th  input of neuron j at time n-1.

 Consider a network consisting of a total of N neuron with M external input connections.

Let W denote the N-by-(M+N) recurrent  weight matrix of the network. In order to make

provision for a threshold for the operation of each neuron it simply include among the M inputs

lines one input whose value is constrained to be always -1 . The net interval activity of neuron j at

time n for jB is given by 


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where AB is the union of sets A an B . At the next time step n+1, the output of neurons j is

computed bu passing vj(n) through the nonlinearity  (i), obtaining 

yi(n+1)=  (vj(n)).                                                           (15)

The system of equation (14),(15) where the index j ranges over the set B and where ui(n) is

defined in terms of the external inputs and neuron outputs by (14) , constitutes the entire dynamics

of the net work . 

CONCLUSION

Note in this work time t approaches infinity so as to permit the recursive network to relax to a

stable condition. The asymptotic storage capacity of the network has to be maintained small for the

fundamental memories to be recoverable. This is indeed a major limitation of the Hopfield network.

The temporal back – propagation algorithm to be described by two distinct characteristics: discrete

– time operation and fixed time delays. The obtained algorithm a based on the on the real time

temporal supervised learning proceeds as follows: for every time step n 
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