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Abstract—The codeword searching sequence is sometimes vital to the efficiency of a VQ

encoding algorithm. In this paper, we present a fast encoding algorithm for vector quantization that

uses Tchebichef moments of an image block three characteristics of a vector:  linear projection,

variance and third moment.  A similar  method using linear projection and variance of an image

block was already proposed (EENNS, IEENNS). Severeal new inequalities based on Tchebichef

moments of a image block are introduced to reject those codewords that are impossible to be the

nearest  codevector  and  cannot  be  rejected  by  inequalities  based  on sum and variance,  thereby

saving a great deal of computational time, while introducing no extra distortion compared to the

conventional full search algorithm. The simulation results confirm the effectiveness of the proposed

algorithm  compared  with  improved  equal-average  equal-variance  nearest  neighbor  search

(IEENNS).
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INTRODUCTION 

Vector Quantization (VQ) [1], [2] is an efficient technique for data compression and has

been  successfully  used  in  various  applications  involving  VQ-based  encoding  and  VQ-based

recognition.  The  response  time  of  encoding  and  recognition  is  a  very  important  factor  to  be

considered for real-time applications. The k -dimensional, N -level vector quantizer is defined as a

mapping from a  k -dimensional  Euclidean space into a  certain  finite  set  1 2, ,..., NC C C C .  The

subset  C  is called a codebook and its elements are called codewords. The codeword searching

problem in VQ is to assign one codeword to the input test vector in which the distortion between

this  codeword  and  the  test  vector  is  the  smallest  among  all  codewords.  Given  one  codeword

 1 2, ,...,j j j jkC c c c  and the test vector  1 2, ,..., kx x xx , the squared Euclidean distortion measure

can be expressed as follows:  
2

1( , ) k
ij ji iD C c x x .
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From the above equation, each distortion calculation requires  k multiplications and  2 1k 

additions. For an exhaustive full search algorithm, encoding each input vector requires N distortion

computations  and  1N  comparisons.  Therefore,  it  is  necessary  to  perform  kN multiplications,

 2 1k N additions  and  1N  comparisons  to  encode  each  input  vector.  The  need  for  a  larger

codebook  size  and  higher  dimension  for  high  performance  in  VQ encoding  system results  in

increased computation load during the codeword search.

Many researchers have looked for fast encoding algorithms to accelerate the VQ process.

These works can be classified into two groups. The first group rely on the use of data structures that

facilitate  fast  search  of  the  codebook  such  as  TSVQ  or  K-d  tree  [3]  ,[4].  The  second  group

addresses an exact solution of the nearest-neighbor encoding problem. A very simple but effective

method is the partial distortion search (PDS) method reported by Bei and Gray [5], which allows

early termination of the distortion calculation between a test vector and a codeword by introducing

a premature exit  condition in the searching process.  The equal-average nearest  neighbor search

(ENNS) algorithm uses the mean value of an input vector to reject impossible codewords [6]. The

improved  algorithm,  i.e.,  the  equal-average  equal-variance  nearest  neighbor  search  (EENNS)

algorithm, uses the variance as well as the mean value of an input vector to reject more codewords

[7]. This algorithm reduces computational time further with 2N additional memory. The improved

algorithm termed IEENNS uses the mean and the variance of an input vector like EENNS but

develops a new inequality between these features and the distance [8].

In this  paper,  we will  examine IEENNS algorithm which uses two inequalities  between

mean, variance and the distance and we present an algorithm based on Tchebichef moments.

THE ALGORITHM

The IEENNS algorithm [7] use two characteristics of a vector, sum and the variance 

simultaneously. Let 1 2[ , ,..., ]kx x xx  be a k -dimensional vector. The sum of vector components can

be expres as 1
k
i iS xx  and the variance as 1( / )k

i iV x S k x x . Assuming the curent minimum 

distortion is minD , the main spirit of the IEENNS algorithm can be stated as follows:

If 
2

min( )
jCS S kD x  then min( , )jD C Dx  and jC  will not be the nearest neighbor to x

ElseIf 2
min( )

jCV V D x  then min( , )jD C Dx  and jC  will be rejected

ElseIf 2 2
min( ) ( )

j jC CS S k V V kD   x x  then min( , )jD C Dx  and jC  will be rejected

Tchebichef moments of an N×N image block, ( , )f x y are given by [9]: 
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These discrete moments are orthogonal and by scaling the polynom ( )nt x  we can obtain a set of

orthonormal moments. Thus, we can write:

2
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0 0
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where ( , )D f g  is defined as squared Euclidian distance between image f  and image g .

Having the codebook  1 2, ,..., NC C C C ,  the input image block  f  and assuming that the

current  minimum distortion is  min ( , )qD D f C ,  the main idea of the algorithm can be stated as

follows: 

If min( , )T iD f C D  then min( , )iD f C D . This means that iC  will not be the nearest neighbor

to f  and iC  will be rejected. 

The complexity reduction is caused to reduction in number of addition and multiplications

needed  to  compute  ( , )T iD f C  instead  of  computing ( , )iD f C .  By  choosing  a  cleaver  searching

sequence, experimental results shows that this proposed algorithm is faster than IEENNS algorithm,

in terms of computational complexity.

RESULTS AND DISCUSSION

The images are 512×512 monochrome with 256 gray levels. An image is partitioned in 4×4 image 

blocks and the codebook is design using the Linde-Buzo-Gray (LBG) algorithm with Lena image as

a training set. The Peppers and Baboon images are used as the test images. The proposed algorithm 

is compared to the Full Search, ENNS, IENNS, EENNS and IEENNS algorithms. Table 1 show the 

average number of operations per pixel for a codebook size of 512 codevectors.

Table 1:  Comparison of average Number of Operations per Pixel

Codebook

size

Method

Encoded image
Peppers Baboon

Mult. Add. Comp. Mult. Add. Comp.

512

Full Search 512 992 31.94 512 992 31.94
IEENNS 27.43 42.85 46.56 74.25 119.06 128.31
Proposed 23.81 37.87 40.51 66.38 107.40 115.98
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CONCLUSIONS

In  this  paper  new inequalities  using  Tchebichef  moments  are  introduced.  The proposed

algorithm uses this  inequalities  to  eliminate  many of the impossible  matching codewords wich

cannot  be  eliminated  by  another  algorithms.  Experimental  results  confirm  that  the  proposed

algorithm is superior to the IEENNS algorithm.
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