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INTRODUCTION 
  

Hybrid systems (HS) are a class of systems 
which incorporates discrete-continuous process, 
such that the discrete dynamics and continuous 
dynamics are intertwined with each other. They 
arise in numerous important applications in CAD, 
real-time computing, computer networks, safety 
analysis, robotics and automation, flexible 
manufacturing systems, transport systems, fault 
tolerant control systems, mechatronics process 
control, biological systems, fluid systems, etc., and 
have recently been at the center of intense research 
activity in the computer systems and networks,  
control theory, computer-aided verification and 
artificial intelligence communities. Thus, HS have 
received increasing attention in the last few years, 
due to the ubiquitous trend of employing digital 
controllers in traditionally analogous environments, 
for example, manufacturing systems. For various 
applications and modeling of HS we refer to [1].  

Discrete-continuous modelling and simulation 
is concerned with the description, analysis and 
performance evaluation of the dynamic behaviour 
of HS [3, 6, 7]. This approach is a research area that 
becomes more and more interesting and is due to 
the fact that most systems of real world applications 
are not purely discrete nor purely continuous and 
often both parts influence each other.  

In the past several years, methodologies have 
been developed to model HS with stochastic 
behavior, to analyse their dynamic properties and 
asses their performance specifications [4, 5].   

The generalized stochastic Petri nets (GSPN) 
provide a convenient and concise formalism for 
describing the discrete event dynamics of HS 
(computer systems, manufacturing systems, 
communication systems, biological systems, etc) [3, 
7]. However, the underlying state space of GSPN 
models tends to be extremely large in practical 
modeling applications, often forcing us to seek 
approximate solution methods [4]. An alternative 
modeling paradigm for the purpose of analysis and 
simulation of HS is based on stochastic fluid models 
(SFM). The SFM paradigm allows the aggregation 
of multiple events into a single event associated 

with a “significant change” in the system dynamics. 
This offers the possibility of integrating, in a natural 
way, continuous and discrete dynamics in a single 
model.  

Among the most SFM popular formalisms that 
are used for modelling of HS, there are the timed 
hybrid Petri nets (THPN) [4], fluid stochastic Petri 
nets (FSPN) [2, 6, 8] and hybrid stochastic Petri 
nets (HSPN) [5]. In such models the some places 
may hold a discrete number of tokens while others 
contain a continuous quantity represented by real 
quantities. However, for real HS visually modelling 
and simulation, it is possible that some attributes of 
these systems should take specific multiple different 
values; that cannot be easily described in HSPN or 
FSPN since their modelling will significantly 
increase graphical complexity of the system model. 
For example, in order to evaluate the performance 
measures of some hybrid systems processes for a 
specific simulation task considering thousands of 
services with different values, a high number of 
places, transitions and arcs will be needed in HSPN 
model in order to be able to obtain desired load 
value for each specified time interval. This brings a 
considerable higher structural complexity of this 
type model, so it is difficult to analyse such a 
complex structure, for example the amount of states 
introduces a complexity in global computing and 
because of that we have a longer simulation time. 
However, it should also to enhance this formalism 
in order to be able to fully represent, more concise 
and flexible describe HS systems with complex 
discrete-continuous stochastic process.  

In order to address such issues, we introduce the 
model definition, behavior rules and the graphical 
representation for a new kind of HSPN formalism 
with matrix attributes, called bellow as HSMN, 
similarly as they were used in [6] through 
introducing database arcs with matrix weight, that 
makes possible the use of real data in the simulation 
process, assuring the validity of the obtained 
results.. This extension allows the modeling of high 
complexity systems without the danger of having a 
very graphically complicated HSPN model that is 
too difficult to represent and hard to understand. In 
the same context, we consider some examples to 
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graphically represent HSMN and them unfolding 
with HSPN models that whose behaviours are 
equivalents. 

An important advantage of proposed approach 
is the fact that HSPN model representation is very 
concise and flexible, because majority of its 
attributes are parameterized and can take various 
marking-dependent values.         
                  
 

1. HSPN WITH MATRIX 
ATTRIBUTES 

 
1.1. Formal definition 

Let the IN and IR are the sets of non-negative 

natural and real numbers, respectively. 
The definition of a HSPN with matrix attributes, 

called HSMN, is derived from [3, 5, 6, 8] and it 
inherits most of the features of GSPN, THPN and 
FSPN. In a HSMN net the matrix attributes of 
objects (arcs, place capacities, transition guard and 
priority functions, transition firing rates, etc.) type z, 
depending on current network state s, are defined by 
a set of matrix Az

nk
z
ji sa  )]([ , AzThe value of 

elements )(sa z
ji  are constants, variable or functions 

of specified type, eventually they can be depending 
on current network state s of a HSMN.

The dimension nk   and the localisation of 
current element )(sa z

ji of matrix Az is specified by a 

discrete control place set D
z

A PP  . For example, for 
specification Az and current computing of its 
element it should be a control place lp  set 

},{ vl
z

A ppP  . So, the current number of tokens 

)( ll pMmi   and )( vv pMmj  of control 

places  lp  and vp  respectively shows the element’s 

position in the Az matrix, and its values needs to be 
imported and taken in consideration when executing 
and analysing the model. Moreover, the capacity of 
control place z

Al Pp  and place z
Av Pp   should be 

specified to kpK l
p )(  and npK v

p )( , 

respectively. 
Formally, a HSMN is specified as a 14-tuple 

H = < P, T, Pre, Post, Test, Inh, Kp , Kb, G, Pri, 
M0,  , W, V >, where: 

  P is the finite set of places consisting of a set 
of discrete places PD and a set of continuous places 
PC , P=PD PC , PD PC = .  A discrete place 

ip is drawn with a single circle and can contain a 

number of tokens,  INpMm ii )( , non-negative 

integer values. A continuous place (buffer) kb  is 
drawn with two concentric circles and can contain a 
real number of fluid IRbxx kk  )( . The mark-

ing (the state) s=(M, x) of  the H  is given by pair 
of vector-columns, M and x,  describing the 
contents value of each type place, (M, x) 

||||ˆ CD PP IRINS   , respectively. We call Ŝ  the 

“potential state space”, as opposed to the “actual 
state space” SS ˆ , the set of marking actually 
reachable during the evolution of the H . The 

current marking s (M, x) S evolve in time, 
which we indicate by  , so, formally, it is a 
stochastic process {(M( ), x( ), 0 ). 

   T is a finite set of transitions, TP = , that 
is partitioned into a set TD of discrete timed 
transitions and a set TC  of continuous timed transi-
tions, that T =TD  TC , TD  TC =  . A 
continuous timed transition Ck Tu   is drawn as an 

empty rectangle. The set of discrete transitions TD 
is partitioned into TTTD  0 ,  TT0  so that: 

T   is a set of timed discrete transitions and T0 is a 

set of immediate discrete transitions. 
  Pre, Test and )(ˆ:

||

PBagINSTPInh
AP

   
respectively are a backward flow, test and inhibition 
functions incidence mappings. )(PBag  is a discrete 
or continuous multiset over P. The forward flow 
function incidence mappings in the multisets of P is 

a )(ˆ:
||

PBagINSPTPost
AP

  describe the set 
of arcs A with the marking-dependent cardinality, 
connecting transitions with places and vice-versa.  

 }{: ||   ININPK DP
Dp  describe the ca-

pacity bound 
kpK on each discrete place Di Pp  , 

 maxmin )(0
ii pip KpMK , which can contain 

an integer number of tokens, respectively. By 
default, the 0min 

ipK  and max

ipK  is set to infinity.  

  The IRINIRPK
AP

CP
Cb  

||||:  describe the 

fluid bound on each continuous place 
Ck Pb  , such 

that )(min
kk bxx   max

kx , where the min
kx  

describe the lower fluid bound and max
ix  upper 

bounds of of kb . By default the max
kx  is set to 

infinity, and it no effect. An implicit lower bound 
of continuous place is 0.  

   

||ˆ:
AP

INSTG {True, False} describe the 
marking-dependent guard function of each transi-
tion. For Tt j   a guard function )(sg j

 will be 
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evaluated in each marking s , and if it is true (the 
default value is true), the transition may be enabled, 
denoted )(sTt j  , otherwise 

jt  is disabled.  

  Pri:   ININST
AP ||ˆ  defines the dynamic 

priority function for the firing of each transition. 
The firing of a transition with higher priority 
potentially disables all the transitions with the lower 
priority. By default, the Pri(T0)>Pri(T ).                      

Figure 1 summarizes the representation of all 
the H  graphical primitives. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

  The current marking (state) s=(M, x) S  value 
of a H  net depends on the kind of place. The 

)( ii pMm  describes the number of tokens in 

discrete place ip , and it is represented by black dots. 

The )( kk bx x describes the fluid level in continu-

ous place kb  and it is a real number, also allowed to 
take negative real value.  The initial marking of net 
is s0 = (M0, x0). Graphically, the initial marking is 
represented by writing the value of 0

im , or 0
kx , inside 

the corresponding place. If the number 0
im  is small it 

is common to drawn 0
im  tokens inside the place ip , 

represented by dots. A missing value indicates zero.                                            

  A timed discrete transition t T is drawn as a 

black rectangle and has an exponentially 
distributed firing time which marking - dependent 

firing rate   IRINST
AP ||ˆ:  . 

    IRINPBagTW
AP

i

||

)(:  is the weight  

function  of immediate discrete transitions 
0Ttk  , 

and this type of transition is drawn with a black 
thin bar and has a zero firing time. 

   IRINSTV
AP

C

||ˆ: is the marking 

dependent fluid rate function of timed continuous 
transitions

cT . These rates appear as labels next to 

the continuous timed transitions. If cj Tu   is 

enabled in tangible marking M it fires with rate 
Vj(M), that continuously change the fluid level of 
continuous place PC.                                               

Figure 2 summarizes the all possible ways 
placing of arcs in a H  net for discrete transition 
and continuous transition with the discrete places 
and continuous places, respectively. 

Given a transition Tt j  , we denote by jt  and 

jt  the directed preset places and postset places and 

by 
jt  and jt*  the inhibition set  places and test set  

places connected respectively with transition tj.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

1.2. The HSMN dynamics 

The dynamics of the HSMN combines both 
time-driven and event-driven dynamics. We define 
macro-events the events that occur when [3]: 

The evolutions of HSMN in current marking 
),( xMs  are determined by the following rules: 

1. Localization of the elements )(, sa z
ji

 Az  for 

)( lpMi   and )( vpMj  , z
Avl Ppp ,  of type z ; 

Figure 2. All kinds of arcs and their possible 
ways for placing in a H . 

Figure 1. All the graphical primitive of the H . 
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2. Computing the current value of )(, sa z
ji

, 

obtaining the respective constant values. If 
0)(  lpMi and/or 0)(  vpMj  then the 

cardinality value of a respective attribute type z is 
given by default; 

3. For theses values obtain the enabling set of 
transitions )()()( sTsTsT CD  ,  )()( sTsT CD  ; 

4. Firing of selected transition )(sTt and 

change the current state: sts [ . 
Enabling and Firing rules. As already described 

[??], two types firing of enabled transition, called 
discrete firing and continuous firing, govern the 
state evolution of the net. 

Let )(sT be the set of enabled transitions in 
current state s=(M, x) S .  

We say that a discrete transition )(sTt Dj   is 

enabled in current state s if the following logic 
(Boolean) expression (enabling condition )( jD tec of 

jt  is verified: 




i
tp

jD mtec
ji

(()( Pre &)),( ji tp




k
tp

m
jk

((


&)),( jk tpInh

&)),(((
* jll

jtlp
tpTestm 



&)),()((( jnnp
tp

tpPostmK
jn







i
tb

x
ji

(( Pre

&)),( ji tb 


k
tb

x
jk

((


&)),( jk tbInh

&)),(((
* jll
tb

tbTestx
jl




&)),()((( jnnb
tb

txPostxK
jn




)(sgj . 

The transition )(sTt dj  may fire if no other 

transition )(sTt dk   with higher priority is enabled, 

and yielding: 

),( jtCMM  , there 

),( jtpC ),( jtpPost Pre ),( jtp , DPp . 

The stochastic evolution of the HSMN in 
tangible marking is governed by a race [2, 3]: the 
timed discrete transition t with the shortest firing 
time is the one chosen to fire next. If an imme-
diate discrete transition is enabled in current 
marking s, it is vanishing. Otherwise, the marking is 
tangible and any timed discrete transition is enabled 
in it [3, 5]. If several enabled immediate transitions 

)(, sTtt Dkj   are scheduled to fire at the same time 

in vanishing marking s, the transitions tk, with the 
respective weights wk , fire with probability: 





)(0

),(/),(),(
MTt

jkk

j

stwstwstq . 

Also, we say that a continuous transition 
)(sTu Cj  is enabled and continuously fires in 

current marking s if the following logic expression 
(the enabling condition )( jC uec ) is verified: 

&)0(()( 


i
ub

jC xuec
ji




k
up

m
jk

((


&)),( jk upInh &)),(((
* jll
up

upTestm
jl







k
ub

x
jk

((


&)),( jk ubInh )(sg j & 

&)),(((
* jll
ub

ubTestx
jl




)),()((( jnjnb
ub

uxPostVxK
n

jn




, 

and no other transitions with higher priority are 
enabled in current state.  

If the state s is tangible, fluid flow could 
continuously through the flow arcs of enabled 
continuous transitions into or out of continuous 
places. As a consequence, if transition tc is enabled 
in current state it enabling degree, for every ub   
and  x(b)>0, is: 

 Enab(u , s )=
ub 

min {x(b)/Pre(u, b)}. 

Given two time instants and   , the evolution 
of the fluid level in buffer Ci Pb   is given as:   

 ),,,(),(),(   ubbxbx iii , there 

  





dubPostub

jij
ubu jii )(),(:),,,(





dube

kik
ubu ji  

 )(),(Pr ,
ju  

and
ku denote the firing speeds of ju and ku at time 

  respectively. 

Upon firing, the discrete (continuous) transiti-
on removes a specified number (quantity) of tokens 
(fluid) for each discrete (fluid) input place, and 
deposits a specified number (quantity) of tokens 
(fluid) for each discrete (fluid) output place. The 
levels of fluid places can change the 
enabling/disabling of transitions.  

 
 

2. HSMN EXAMPLES  
 

 In the following, we illustrate the power and 
flexibility representation of proposed HSMN 
formalism with a few examples. 

We allow the firing rates and the enabling 
functions of the timed discrete transitions, the 
enabling functions and firing speeds of the timed 
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continuous transitions, and arc cardinalities to be 
dependent on the current states of the H .  

Graphically, a matrix attribute of HSMN will be 
presented in a way that it will contain the matrix 
name in square brackets. So, for example, a direct 
arc matrix cardinality [2, 3, 5], denoted by , 
can take values that are contained in a specified 
matrix A. To well understand the meaning of this 
model type, an example of HSMN1 is presented in 
figure 3 with the following initial state  

),( 000 xMs   with:  

)432()4,1,0,3,2( 54210 ppppM  , 

)18.4,25.3,4.17()18.4,25.3,4.17( 3210 bbbx  . 

The mean matrix cardinality values of a discrete 
arc ),( 31 pt , setting continuous arcs { ),( 11 tb , 

),( 31 bt } and fluid arc ),( 21 bu  in  HSMN1, 

controlled by },{ 21 ppP A  , are given by following 
specified matrices:  

A1=





















32

2524

331

4841

327

1123

mm

mmmm

mmm

, 

A2= A3=






















43

3

33

15.240.125.1

27.325.335.275.1

85.065.320.3

mx

x

xx

, 

   A4=




















32

3

3

15.240.125.1

27.332.035.275.0

85.065.325.0

xx

x

x

, 

where 5,4,3,2,1),(  ipMm ii  is the number of 

tokens in discrete place ip  in current state, and  

3,2,1),(  kbxx kk  is the quantity of a fluid 

level in buffer kb . 

Control place 1p  has the specified capacity 

3)( 1  kpK p , but the capacity of place 2p  is 

4)( 2  npK p . 

For HSMN1 in figure 3a the selected z
jia ,  

element position in matrix Az, the value must to be 
imported, is realized by information about the 
current token number contained in control place set 

},{ 21 pp , that specify the index row 1mi   and 

index column 2mj  . So, for 20
1  mi  and 

30
2  mj  we obtain: the cardinality value of arc 

),( 31 pt  is equal to 1
3,2a = 102 52  mm , of arcs 

),( 11 tb and ),( 31 bt  its are equal to 2
3,2a = 3

3,2a = 

43.725.3 3  x , respectively, but for arc 

),( 21 bu it is equal to 5.432.0 3
4

3,2  xa . For 

these corresponding current values of arc cardinality 
the enabled set of transitions is },{)( 110 utsT  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let the firing speed of continuous transition 1u  

is 11  and firing rate of timed transition 1t is 

25.01  , that it mean firing delay is 41 t t.u.  

Because the cardinality of ),( 12 ubInh =15.50, 

then the transition 1u  continuously fire only during 

72.2/)50.15( 4
3,221
 axu 41  t t.u., so it 

is disabled and the fluid level 1x of buffer 

2b become: 17.23)5.2( 2
3,211 1
 axx u .  

Figure 3b presents the state of HSMN1 network 
after 1t  fires, from where we can observe that 

place 3p  has a number of tokens equal to 9, because 

the element 84 324,3  mma  was selected. As 

Figure 3. A 1HSMN with matrix arc 
cardinality: a) initial state; b) final state.
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a result the firing of 1t , we yield  the new state 

),( xMs   with: 

  )9,10( 53
1

3,20 ppaMM  , 

50.15
1

2
3,222  uaxx  , 61.113

3,233  axx . 

In a similar way all HSMN nets attributes can be 
parameterized using matrix cardinality, for exam-
ple, see the following attributes [3]: 

 Guard function of transitions Gz1,  

    Gz1
nk

z
ji sg  )]([ 1

, ,  },{1 utz  ; 

 Place capacity Kz2
nl

z
ji sk  )]([ 2

, , },{2 bpz  ; 

 Firing rate Rz3
nk

z
ji sr  )]([ 3

,
, },,{3  wz  ; 

 Priority firing of transitions T  
     

nk
z

ji
z s  )]([ 4

,
4  , 4z Pri; 

The most important benefit we get from using 
HSMN when describing and verifying discrete-
continuous processes of hybrid systems is that the 
structure of these models’ is very concise and is 
very flexible when modifying it parameters in real 
time, because most of its attributes are 
parameterized. This permits assigning in a current 
state controlled mode, alternative values of HSMN 
attributes. Also, using proposed approach matrix 
attributes, real time data can be easily imported in 
simulating model, and in this way we can ensure 
results correctness.        

Moreover, the modelling the same system 
through the other kind of Petri net, for example 
GSPN or THPN, to drive the structure of this 
models it is necessity for each matrix attribute to 
use additional nk 2  arcs and nk   additional 
transitions (respective places), and this means that 
the model’s complexity grows significantly. To 
illustrate the usage advantages of described 
approach, we present a simple example of HSMN2 
shown in figure 4a, that a matrix cardinality of 
direct arc ),( 65 pt  is parameterized by matrix A:             

A = 











22

1

2124

235

mm

m
 .       

In this model control places are  },{5
vl

A ppP   

with 2)( 2 pK p  and 3)( 3 pK p respectively. 

Selection of respective row 2mi   and column 

3mj   of element ),(5

,
Ma

ji
;2,1i   3,2,1j  

from matrix A is done in a dynamic way by current 
marking of places 2p and 3p , respectively.    

The unfolding of the model HSMN2 trough 
GSPN2 attributes approach, that whose behaviours 
are equivalents, is shown in figure 4b. 

In order to show it in such mode, we need to 
substitute in HSMN2 attributes as bellow:  

1) The transition 5t  is substitute by 6nk  

transitions lt ,5 , nkl  ,...,1 , that whose guard func-

tions are respectively: 
        )3(&)2()( 321,5  mmMg , 

        )2(&)2()( 322,5  mmMg ,   

        )1(&)2()( 323,5  mmMg , 

       )2(&)1()( 324,5  mmMg , 

       )3(&)1()( 325,5  mmMg , 

       )1(&)1()( 326,5  mmMg ; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

2) The direct matrix arc ),( 65 pt  with matrix 

cardinality A is substitute by nk   direct arcs 
),,( 6,5 pt l 6,...,1l  with weight’s value from 

respective A matrix’s elements;  

p1 p2 p3
t1 t2

p4 p5

t4 t5,1

p6

t6 m6

b)

t5,2

t5,3

t5,4

t5,5

t5,6

t3

4

3

25+m1

2+m2

1+2m2

p1 p2 p3
t1 t2

t3

p4 p5

t4 t5

p6t6

[ A ] 
m6

a)

Figure 4. Behavioural equivalent Petri net: a) 
model HSMN2 and b) model GSPN2. 
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3) To connect place 5p  with each introduced 

transition lt ,5 through arcs ),( ,55 ltp , 6,...,1l ;  

4) Place 2p  (respectively 3p ) is connected with 

each introduced transition lt ,5  through test arcs 

),( ,52 ltp  (respectively ),( ,53 ltp ). 

In addition, it is to mention, that the real hybrid 
system is modelled by a HSMN approach, were 
contain multiple matrix attributes Az with different 
sizes, the behavioural equivalents resulting HSPN 
model is still too complex to be of practical use for 
conveying the system behaviour visually. For 
example, the equivalents resulting HSPN1 model of 
HSMN1 shown in figure 3, may contain potentially 
at least 

13N  graphical elements (transitions, places 
and arcs), there: 

 2073643))(( 444

1   jj j nkN . 

Proposed framework is generic and can be 
applied to a numerous system types with discrete-
continuous process. Additionally, with minor 
changes and additions, described approach can be 
generalised for studying domains with similar 
characteristics. Presented analysis shows that 
HSMN, which were defined and studied in this 
paper, can be used as a much promising instrument 
for modelling and evaluating of hybrid system 
performance indicators.         

This work is supported by National Institutional 
Applied Reserche Project under grants 
15.817.02.28A,  Republic of Moldova. 

 
 

3. CONCLUSIONS 
 

In this paper, a new framework HSMN was 
introduced, as a derivative of GSPN and HSPN. 
Modelling and performance evaluation of stochastic 
discrete-continuous process is illustrated.  

The HSMN approach is very efficient for 
representing, modelling, verifying and analysing of 
hybrid system performance, because HSMN use has 
the following advantages: 1) there are additional 
visualisation features for modelling and simulating 
procedures, that permits to create a string 
environment for validation and evaluation; 2) it is 
possible to visualise in the same model attribute’s 
dynamic change; 3) the real data can be easily 
imported in simulation process, assuring correctness 
and validity of obtained results.      

The applicability of this approach is illustrated 
through a few examples of HSMN models with 
different matrix attributes. Moreover, this approach 
with rather few modifications and additions may be 

further generalized to study a reconfigurable hybrid 
system from areas with similar enhanced 
characteristics. 

We aim to elaborate and develop a software 
product for visual simulation and analysis of HSMN 
models that describe the evolution of hybrid 
systems with discrete-continuous process.   
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