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1. INTRODUCTION 
 

The river kinetic energy can be utilized 

with the help of water stream turbines. This 

type of turbines cab be easily mounted, simply 

operated and their maintenance costs are 

convenient. The water stream rate of 1m/s 

represents an energetic density of 500W/m2 of 

the crossing section, and only one part of this 

energy can be extracted and converted into 

electrical energy. There are different 

conceptual solutions for the elaboration of this 

type of turbines. On the basis of the carried out 

theoretical research and undertaken computer 

simulations the conceptual diagram of micro-

hydro-power station with pintle and blades 

fixed on vertical axles has been elaborated. The 

blades are oriented at a setting angle  , which 

is variable concerning the action line of the 

flow velocity vector V (Fig. 1).  

 
 

2. THE FLUID FLOW ACTION ON 

ROTOR BLADES 
 

In order to carry out the numerical 

simulation of the interaction between the fluid 

flow with velocity V  and the micro-

hydropower station rotor blades, the „rotor 

longeron – blade” fragment is taken as basis 

according to Fig. 2. 

Consider a symmetric profile of the blade 

in a fluid flow with uniform velocity V  (Fig. 

2.). In the fixing point O  of the symmetric 

blade with the boom OO we consider two 

coordinate systems, namely: the O xy  system 

with axis O y  oriented in the direction of 

velocity vector V  , and  axis O x  normal to 

this direction; and the O x y    system with axis 

O y   oriented along the boom direction OO ,  



 
Figure 1. Conceptual diagram of the micro-

hydropower station with vertical axis. 
 

and axis O x   normal to this direction. Points A 

and B correspond to the trailing edge and the 

leading edges, respectively. The angle of attack 

  is the angle between the profile chord AB  

and V  , and the positioning angle   is the 

angle between the boom O O  and V  . The 

hydrodynamic force F  has its components in 

directions O x  and O y , named lift and drag 

forces, respectively, given by: 
 

21
,

2
L L pF C V S                    (1) 

21
,

2
D D pF C V S                   (2) 





 
Figure 2. Rotor blade with aerodynamic profile 
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where 
 is the fluid density, V  is the flow 

velocity, 
pS ch  ( c  is AB  the chord length,  

h  is the blade height) represents the lateral 

surface area of the blade, and 
LC  and DC  are 

the dimensionless hydrodynamic coefficients, 

lift and drag coefficients. Coefficients 
LC  and 

DC  are dependent on the angle of attack  , 

the Reynolds number Re  and the aerodynamic 

form of the blade profile. The components of 

the hydrodynamic force in the coordinate 

system O x y    are given by 

 

sin cos ,

cos sin .

x L D

y L D

F F F

F F F

 

 





  

 
            (3) 

 

The torsion moment at the rotor axis OO  

developed by the blade i  is 

 

,r i xT F OO
                           (4) 

 

and the total torsion moment developed by all 

blades 

 

1

Npal

r ri

i

T T



 ,                       (5) 

 

where Npal  is the number of the rotor blades.   

Since the hydrodynamic force does not 

have its application point in the origin of the 

blade axis system O , it will produce a pitching 

moment with respect to a reference point. 

Following a standard convention, the reference 

point is located at a ¼ of the chord distance 

from the leading edge B . The pitching 

moment, is computed by 
 

21

2
M pM C V cS   

 

where 
MC  represents the pitching moment 

coefficient.  

In what follows, the profile chord is 

considered of unit length. Initially, consider the 

incompressible potential flow model. Velocity  

 ,V u v  at a field point ( , )P x y  is given by 

 

( , ) ,  ( , )u x y v x y
x y

 
 
 

, 

 

where   is the flow potential obtained by 

superposition of the uniform velocity flow 

( cos , sin )V V V     and  a distribution of 

sources and vortices over the profile C . 

Therefore, 

 

cos sin S VV x V y             (6) 

                                                                                              

where S  is the potential of the source 

distribution of strength ( )q s  given by 

 

( )
ln( )

2
S

C

q s
r ds


   ,                (7) 

                                                                                                

and V  is the potential of vortex distribution of 

strength ( )s  given by 

 

( )

2
V

C

s
ds





   .                 (8) 

                                                                                         

In Eq. (7,8) s  represents the distance measured 

along the contour C , and ( , )r   are the polar 

coordinates of the point ( , )P x y corresponding 

to the distance s (Fig. 3). Consequently, the 

potential in the filed point ( , )P x y  is given by 

 

( ') cos sin

( ) ( )
         ln( ) .

2 2
C C

P V x V y

q s s
r ds ds

 




 

   

  
          (9) 

 

 
 

Figure  3.  Notations used in the computation 

of the flow potential. 

 

In order to compute   numerically, a 

collocation method is used: the boundary of the 

profile C  is approximated with a closed 

 
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polygonal line 
1

N

jj
E


, the edges jE  having 

the endpoints jP  and 1jP  on C . The 

numbering of the endpoints begins from the 

trailing edge on the lower side in the direction 

of the leading edge, passing further on the 

upper side. Assume the vortex strength ( )s  

constant on the boundary, and the source 

strength ( ) , 1, ,jq s q j N   constant on each 

boundary element
jE . Thus, Eq. (9) becomes 

 

1

cos sin

   ln( )
2 2

j

N
j

j E
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q
r ds
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 
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 
 

        (10) 

 

with the unknowns   and , 1, ,jq j N .  

Consider the boundary element 
jE  with 

endpoints jP  and 1jP   (Fig. 4). The normal and 

tangent unit vectors of jE  are given by 

( sin ,cos )j j jn     and (cos ,sin )j j j   , 

where  

1 1

jsin ,  cos
j j j j

j

j j

y y x x

l l
 

  
  . 

 

Figure 4. Boundary element jE . 

 

The unknowns   and , 1, ,jq j N  are 

determined from the boundary condition and 

Kutta condition. The boundary condition 

0V n   is imposed at the collocation points 

 ,jj jM x y , which are the middle points of the 

element jE . Let ( , )jj ju u x y  and 

v ( , )jj jv x y  be the velocity components at 

jM . Boundary condition provides N  relations 

 

sin cos 0,    j 1, ,j j j ju v N      (11) 

 

used for determining the 1N   unknowns   and 

, 1, ,jq j N . The Kutta condition provides the 

final relation, namely: 
1 NE E

V V    , where   

is the tangent unit vector of the boundary 

element. In our notations, the Kutta condition 

takes the form 

 

1 1 1 1cos sin cos sinN N N Nu v u v       .(12) 

 

The velocity components at 
iM  are determined 

by the contributions induced by the source and 

vortex distributions from each element 
jE  
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where , , ,s s v v

ij ij ij iju v u v  are the influence 

coefficients computed as follows: 
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where ij  is the angle between j iP M  and  

1j iP M  for i j , and ,  , 1, ,ii i j N   , 

and ijr  is the distance between iM  and jP . 

Inserting Eqs. (13) and (14) in Eqs. (11) and 

(12) gives a linear system of 1N   equations 

with 1N   unknowns   and , 1, ,jq j N . 

Knowing   and , 1, ,jq j N , the tangential 

component of the velocity at the collocation 

point iM  is computed as follows (the normal 

component is zero): 
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The local pressure coefficient on the discrete 

contour of the profile is given by 

 
2

, 1
j

p j

u
C

V





 
  

 
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The hydrodynamic force acting on
jE is given 

by 

 

 

 
, 1

, 1

,

 ,

xj p j j j

yj p j j j

f C y y

f C x x
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and the pitching moment is computed by 

 

1 1

,
2 2 4

j j j j

m j xj yj

y y x x c
c f f

     
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   
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The total force is the sum of contributions from 

each boundary element 

 

1 1

,   ,
N N

x xj y yj

j j

F f F f
 

    

 

and the lift and moment coefficients are  given 

by 

 

sin cosL x yC F F    ,          (15) 

 

,

1

N

M m j

j

C c


 .                       (16) 

 

In order to compute the drag coefficient a 

boundary layer analysis must be performed. 

The boundary layer analysis is divided into two 

parts: laminar and turbulent boundary layer.  

The laminar boundary layer begins in the 

stagnation point and follows the flow along the 

lower or upper sides of the profile in the 

direction of the trailing edge. As soon as the 

stagnation point is determined, consider a 

uniform arc length partition of the upper and 

lower sides with the nodes being numbered 

toward the trailing edge. 

The Thwaites model is used for the 

laminar boundary layer analysis. Introduce 

parameters: the displacement thickness *  

given by 

 

*

0

(1 )
u

dy
V




  , 

 

the thickness of  impulse loss   defined by 

 

0

(1 )
u u

dy
V V




  , 

 

and the thickness of energy loss 
*  

 
2

*

0

1
u u

dy
V V


   

      
 , 

 

where V  represents the velocity of the 

potential flow in a given point, and u  is the 

tangential velocity in the boundary layer at this 

point. Consider the Von Karman integro-

differential equation 

 

* 1
2

2
f

d dV
C

dx V dx

  



 
   

 
,           (17) 

 

where fC  denotes the local coefficient of the 

friction force on the profile surface given by  

 

2
,

1
2

w

fC
V




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0

w

y

u
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Introducing parameter 
*

H



 , Eq. (17) 

becomes 

 

 
1

2
2

f

d dV
H C

dx V dx

 
   .              (18) 
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Multiply Eq. (17) by u  and integrate to get the 

integral equation for the kinetic energy of the 

boundary layer 

 
* *

3 2 d

d dV
C

dx V dx

 
  ,            (19) 

 

where the dissipation coefficient dC  is defined 

by  

 

2

3 2
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1
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u
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V y
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





 . 

 

Introduce the second parameter 
*

*H



  and 

subtract Eq. (18) from Eq. (19) to get 

 

  
*

* *1 2
2

f

d

CdH dV
H H C H

dx V dx


     . (20) 

 

Eqs. (18) and (20) are not sufficient for finding 

all the unknowns. The supplementary 

conditions are based on the Falkner-Skan semi-

empirical relations. Denoting Re Re V    , 

the following functional dependences are 

presumed 

 

* *( )H H H , 1Re ( )
2

fC
f H  , 2*

2
Re ( )dC

f H
H

  , 

 

where 
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Multiply Eq. (18) by Re  and rearrange the 

terms to obtain  

 

  1

( )
2  ( ) ( )

2

V x d
H W x f H

dx


   . (21) 

 

Multiply Eq. (20) by *Re H  and rearrange 

the terms to get 

 

  3 ( ) ( ) 1  ( ) ( )
dH

V x g H H W x f H
dx

    , (22) 

 

with the following notations /W dV dx , 
*( ) (ln ) /g H d H dH , 3 2 1( ) ( ) ( )f H f H f H  . 

Initial values at the stagnation point are chosen 

such that /dw dx  and /dH dx  are zero.  

The system of differential equations (21) 

and (22) is numerically solved with a backward 

Euler method. The method is used either until 

the transition from laminar to turbulent 

boundary layer is predicted or until the trailing 

edge is reached.  The transition is localized by 

Michel’s criterion 
 

 
0.46

max

22.4
Re Re 1.174 1 Re

Re
x

x

 

 
   

 
, 

 

where Re Rex V x   . 

Similar to the laminar boundary layer, the 

Von Karman integral equation for turbulent 

boundary layer is considered. Computations of 

the turbulent boundary layer parameters are 

done by applying the Head’s model. Let be the 

 
( )

0

( )

x

Q x udy



   

 

volume rate of flow through the boundary 

layer. Then
* /Q V   . Introducing the flux 

velocity /E dQ dx , we get  1 /E d V H dx , 

where 
*

1 ( ) /H     . Head supposed that the 

dimensionless velocity E V  is dependent only 

on 1 1( )H H H . Cebeci and Bradshaw 

considered the semi-empirical relations 
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E

H
V
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3.3 0.8234( 1.1) , 1.6

3.3 1.5501( 0.6778) , 1.6

H H
H

H H





   
 
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.(24) 

 

The last equation used to find the unknowns 

1, ,H H  and fC  is the Ludwieg-Tillman skin 

friction law 

 

 0.678 0.2680.246 10 ReH

fC 

  .        (25) 

 

Combine the Von Karman integral equation 

with Eqs. (23), (24) and (25) to obtain a system 

of differential equations: 

 

( , )
d

Y F x Y
dx

 ,                      (26) 

 

where   1,
T

Y H  and 
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. 

 

Initial values are the final values provided by 

the laminar boundary layer. Numerical 

integration of  Eqs. (26) is done by a second 

order Runge-Kutta method. The method is 

applied either until the trailing edge is reached 

or until the separation of the turbulent layer 

takes place. 

In order to compute the drag coefficient 

DC ,  the Squire-Young formula is used. Given 

 , H  and V at trailing edge A , the drag 

coefficient is given by  
 

   
sup inf

2 | ( | ) 2 | ( | )D A A A AC C
C V V      (27)                                                     

 

with  ( | 5) / 2AH   . 

 

 

3. NUMERICAL RESULTS 
 

In what follows, we compute the hydro-

dynamic coefficients for a rack profile standard, 

and, in particular, NACA profile with chord 

length 1.3c m . The model and numerical 

methods described previously are implemented 

in MATLAB. The coefficients corresponding to 

NACA0016 profile with chord length 

1refc m  : , ,,L ref M refC C  and ,D refC  are given 

by formulas (15), (16) and (27), respectively. 

The coefficients corresponding to the profile 

with chord length 1.3m  are then obtained from 

relations 
 

, 1.3,L L refC C   

2

, (1.3) ,M M refC C   

, 1.3.D D refC C   
 

Figure 5 shows the hydro-dynamic power 

modulus F , which acts on the rotor blade 

together with its tangential and normal 

components ' ',x yF F  versus the positioning 

angle. Figure 6 shows the moment riT  
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Figure 5. Hydrodynamic force acting on a 

blade versus the positioning angle  . 
 

developed by one blade versus the positioning 

angle, given by Eq. (4), and Fig. 7 represents 

the total moment of torsion rT   versus the 

positioning angle, given by Eq. (5). The 

moment of torsion rT   of rotor pin versus the 

positioning angle for three values of external 

flow velocity V  is shown  in Fig. 8. 
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Figure 6. Moment of torsion riT  developed by 

one blade versus the positioning angle  .  
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Figure 7. Total moment of torsion rT   

developped by one blade versus the positioning 

angle  . 
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Figure 8. The moment of torsion rT  of rotor pin 

versus the positioning angle for three values of 

external flow velocity 1 / secV m  , 1.3 / secm , 

 1.6 / secm . 
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