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Abstract — We report the results of numerical investigations of 

the stationary states of an external cavity diode laser (ECDL) 

device composed of a semiconductor laser, a lens, and a distant 

Bragg grating, which provides optical feedback. A rate equation 

model was used to simulate and analyze the behavior of the 

considered laser device.  
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I. INTRODUCTION 

During recent years the control and stabilization of the 

emission of semiconductor lasers by an external cavity has 

received considerable attention. In particular, wavelength 

stabilized, narrow-spectral linewidth semiconductor lasers are 

required for different applications such as frequency 

conversion, quantum optical experiments, coherent optical 

communications, spectroscopy etc. Wavelength stabilization 

can be achieved by the integration of a Bragg grating into the 

resonator, either monolithically into the laser chip (distributed 

feedback laser, distributed Bragg reflector laser) or in an 

external cavity configuration [1]. 

The simplest method for the modelling of a semiconductor 

laser with a weak optical feedback is given by the Lang-

Kobayashi (LK) model [2]. The LK modelling approach can be 

used to get a deeper understanding of the stabilization or 

destabilization of the stationary states of external cavity lasers 

(ECDLs). In the present paper the LK model is used for a 

numerical investigation of the stationary states of a ECDL 

composed of an amplifying semiconductor section, a lens and a 

distant Bragg grating that provides optical feedback. The paper 

is organized as follows. The device structure and mathematical 

model are described in Section II. Section III presents the 

related numerical and experimental results. Finally, some 

conclusions are given in Section IV. 

II. MODEL AND EQUATIONS  

     The investigated ECDL is schematically shown in Fig. 1. It 

consists of a semiconductor laser coupled to an external 

holographic Bragg grating providing spectrally filtered optical 

feedback. Additional feedback is provided by a lens located 

between laser chip and Bragg grating. The laser dynamics is 

analyzed using an extended Lang-Kobayashi rate equation 

model [2] appropriate for filtered feedback [3] for the complex 

field amplitudes E(t) and F(t)  and the excess carrier density 

N(t), 
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where τ1, τ2 are the roundtrip times in the cavities between 

laser chip and lens and between laser and Bragg grating, 

respectively and φ = ω0τ1, ψ = ω0τ2 are the corresponding 

accumulated optical phases. γ1 and γ2 are the feedback 

strengths governed by the reflectivity’s R1 of the lens and R2 

of the Bragg grating, respectively. I is the injection current. 

The other parameter values are: α = 1.8 is the linewidth 

enhancement factor, g = 1.5x10
5
 ns

-1
 is the differential gain, 

τph = 2 ps and τe = 1 ns are the photon and carrier lifetimes, 

respectively; N0 = 1.5x10
8
 is the carrier number at the 

transparency. 

 

Fig. 1. Laser setup. 

     The stationary states of equations (1)-(3) known as external 

cavity modes (ECMs) are given by solutions with the 

following form: 
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where Es, Fs, Ns are time-independent real constants. Inserting 

(4) into (1)-(3) and separating the real and imaginary parts we 

obtain a transcendental equation for ωs 
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where ( ) /s     [3]. 
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III. RESULTS   

To understand the properties of the laser under the 

influence of filtered feedback, we consider the laser dynamics 

in terms of bifurcation diagrams as shown in Fig. 2. Figure 2 

(left) shows the calculated maximum (black) and minimum 

(red) photon numbers versus feedback strength γ2. As the 

feedback strength is increased from zero, first CW operation is 

observed and the corresponding photon number is given by a 

solid line. At a certain feedback strength, denoted by H in the 

figure, there is a Hopf bifurcation and the laser begins to 

pulsate. The Hopf bifurcation is supercritical and, as expected, 

the oscillation amplitude grows with the square root of the 

distance from the bifurcation point. The line P gives the peak 

photon number in the pulsation or periodic regime. As the 

feedback strength is increased further, a scenario compatible 

with the quasiperiodic route to chaos is obtained and several 

instabilities take place.  

When the feedback strength reaches the value γ2 = 27 ns
-1

, a 

jump back to a CW operation region is observed. For values of 

the feedback strength 17 ns
-1 

< γ2 < 27 ns
-1 

the system displays 

a chaotic behavior. Figure 2 (right) displays the bifurcation 

diagram for the feedback phase acting as bifurcation parameter. 

Let us, e.g., consider the case that the phase φ is increased. For 

low values of the feedback phase φ the dynamics of the laser is 

chaotic. It can be noticed from the figure that the amplitude of 

the chaotic oscillations slightly decreases with the increase of 

the phase terminated by the periodic solution (see Fig. 2). The 

CW states are within the Hopf bifurcations denoted by H.   

 

Fig. 2. Numerical bifurcation diagrams for feedback strength γ2 (left) and phase 

φ (right) being bifurcation parameters. ‘CW’ denotes continuous-wave 

operation, ‘H’ Hopf bifurcation and ‘P’ stable periodic solution. 

So far we have clarified different aspects of laser 

bifurcations under the influence of feedback. In what follows, 

we focus on the stationary solutions (so called external cavity 

modes, ECMs) of equations (1) - (3) presented in the form (5). 

It is well known that in the case of conventional optical 

feedback the ECMs are located on ellipses if the air gap phase 

is varied between 0 and 2. For feedback strengths smaller 

than a critical value there is only one ECM. For feedback 

strengths above the critical value, larger numbers of ECMs 

appear. We mention that the ECMs appear and disappear in 

pairs (modes and anti-modes) at saddle-node bifurcations. 

Figure 3 shows the location of ECMs calculated using 

equation (5) for different values of the feedback strength. We 

first consider a small feedback strength γ1 = 5 ns
-1

,
 
γ2 = 5 ns

-1
, 

where the location of the fixed points is similar to that of the 

conventional feedback case, i.e. the modes are located on an 

ellipse (see Fig. 3a). An increase of the feedback strength (see 

Figure 3b and 3d) results in the appearance of new satellite 

bubbles of ECMs on left and right hand sides of a deformed 

ellipse. The onset of these bubbles reflects the existence of 

frequency gaps for which no ECM solutions exist. These 

frequency gaps are originated from destructive interference in 

the feedback coming from the two cavities. When the 

feedback strengths are γ1 = 5 ns
-1

,
 
γ2 = 20 ns

-1 
the feedback 

implies a non-elliptic location of modes (see Fig. 3c). This 

clearly illustrates that in the case of the two feedbacks, one 

from the lens and the other from the Bragg grating, the 

location of the modes becomes more complicated when 

compared with that of conventional feedback. 

 
Fig. 3. Locus of the ECMs in the plane (NS - ωS) for different levels of 

feedback strength: a) γ1 = 5 ns-1, γ2 = 5 ns-1, b) γ1 = 5 ns-1, γ2 = 13 ns-1, c) γ1 = 5 

ns-1, γ2 = 20 ns-1, and d) γ1 = 15 ns-1, γ2 = 20 ns-1, and [0 2 ]    . 

CONCLUSIONS 

In the framework of properly adapted Lang-Kobayashi 

equations, we have treated a single-mode semiconductor laser 

under the influence of optical feedback from a lens and a 

distant Bragg grating. Bifurcation diagrams in dependence of 

magnitude and phase of the feedback were calculated. An 

increase of the number of external cavity modes by rising 

feedback strength was shown.  
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