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Abstract: Nanoparticles, due to their extensive production and application, can have significant con-

sequences for the environment, including soil and plant pollution. Therefore, it is very important to

assess how nanoparticles will affect plants depending on the exposure pathways. The effect of gold

nanoparticles in a concentration range of 1–100 mg/L on Mentha spicata L. during a 28-day experiment

was investigated. Two routes of nanoparticles exposure were applied: root and foliar. Transmission

electron microscopy was used to characterize nanoparticles and their effect on plant leaves’ ultrastruc-

ture. Gold content in soil and plant segments was determined using k0-neutron activation analysis.

For root exposure, gold was mainly accumulated in soil (15.2–1769 mg/kg) followed by root systems

(2.99–454 mg/kg). The maximum accumulation of gold in leaves (5.49 mg/kg) was attained at a

nanoparticle concentration of 100 mg/L. Foliar exposure resulted in the maximum uptake of gold

in leaves (552 mg/kg) and stems (18.4 mg/kg) at the highest applied nanoparticle concentration.

The effect of nanoparticles on the Mentha spicata L. leaves’ biochemical composition was assessed.

Nanoparticles affected the content of chlorophyll and carotenoids and led to an increase in antioxidant

activity. Root exposure to gold nanoparticles resulted in an increase in the number of starch grains

in chloroplasts and also suppressed the activity of the soil microbiota. Gold extraction from mint

leaves into herbal infusion varied from 2 to 90% depending on the concentration of nanoparticles in

the solution and the exposure route. The health risk as a result of gold exposure via herbal tea intake

was assessed through estimated daily intake. The hazard quotient values were found to be less than

the cutoff, indicating that a cup of tea infusion should not cause a serious impact to human health.

Keywords: gold nanoparticles; foliar spraying; root irrigation; spearmint; k0-based neutron activation

analysis; biochemistry; herbal infusion

1. Introduction

The extensive growth of nanomaterial production is a result of wide application of
engineered nanoparticles in medicine and the pharmaceutical industry, the agricultural
sector, electronics, water treatment, etc. Besides industrial application, nanoparticles are
present in various consumer products, including cosmetics, suntan lotions, paints, and
stain-resistant clothing [1–5]. Thus, gold and silver nanoparticles are used as components
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of lotions, antiperspirants, and anti-aging face creams, and they help to eliminate lesions
and improve skin condition. The size of gold nanoparticles (AuNPs) used in skin care
products usually ranges from 5 to 400 nm [6,7]. It should be noted that AuNPs play an
important role in medicine, where they act as carriers of drugs, amplifiers and optical signal
converters, and are used in the diagnosis and treatment of cancer tumors [8–11]. Due to
the increased production of engineered nanoparticles and their use in various fields, their
release into natural and artificial ecosystems becomes inevitable [12].

AuNPs are often introduced into agricultural ecosystems—both accidentally and inten-
tionally. In recent years, nanoparticles have been actively used as fertilizers and pesticides
since it was proven that particles with sizes less than 100 nm have higher biological activity
as compared to larger materials—due to their higher surface-area-to-volume ratio [13,14].
It was suggested that nanofertilizers or nanoencapsulated nutrients have beneficial effects
on crops. Thus, to combat plant diseases and to increase plant productivity, nanotech-
nological techniques for targeted particle delivery have been developed. In experiments
with Cucurbita pepo, it was demonstrated that iron–carbon nanoparticles applied thought
injections and spraying were able to penetrate and migrate in the plant body [13]. Field
spraying of Brassica juncea leaves with AuNPs positively influenced various parameters
related to plant growth and yield, including plant height, stem diameter, and number of
branches and pods [14]. Another study reported an increase in the rate of seed germi-
nation and growth of Gloriosa superba after treatment with AuNPs at a concentration of
1000 µM [15]. The use of AuNPs as fertilizer improved the synthesis of ginsenosides in
ginseng and enhanced the anti-inflammatory effects of red ginseng [16]. In Arabidopsis
thaliana, AuNPs in concentrations up to 80 µg/L enhanced total seed yield and improved
seed germination rate, vegetative growth, and free-radical-scavenging activity [17].

At the same time, extensive use of engineered nanomaterials results in their release in
the environment and accumulation in soil [18], which in turn leads to their uptake by plants,
resulting in potentially negative impacts on human health [19–21]. A number of studies showed
that nanoparticles present in the atmosphere can settle on leaves, penetrate them through
trichomes or stomata, and then be transferred to other plant tissues [22]. Luo and Cao [20]
found that the plants Erigeron canadensis and Boehmeria nivea collected in the Guangdong
Province of China contained AuNPs of various shapes with a diameter of 5–50 nm [20].

Since gold is not one of the biologically important trace elements, its accumulation
in plants, besides beneficial effects, can lead to toxic impacts as well [12]. Thus, the length
of Arabidopsis thaliana L. roots when grown in the presence of 100 mg/L AuNPs was 75%
shorter [23]. AuNPs can also affect the soil microbial community. Maliszewska [24] reported
that AuNPs showed toxicity towards soil microorganisms involved in carbon and nitrogen
transformations. Nanoparticles can be accumulated in plants through roots and leaves,
and while the accumulation through roots is relatively well-studied, their uptake through
leaves is less investigated and requires additional research. Accumulation of nanoparticles
in plants consumed as food by the human population may result in their transfer into
the human body. To our knowledge, there is no research on the complex impact of metal
nanoparticles on soil microbiota, plants, and human health.

The aim of the present study was to assess the effect of AuNPs applied in different
concentrations through root and foliar application on Mentha spicata L. The objectives of
this study included the following: (i) assessment of gold accumulation in soil and different
segments of plants using neutron activation analysis; (ii) investigation of the AuNPs effect
on soil microbiota and Mentha biochemical composition; (iii) calculation of the percentage
of gold extraction in herbal infusion; and (iv) evaluation of the potential health risks of
spearmint infusions containing AuNPs.

2. Materials and Methods

2.1. Object of Study—Mentha spicata L.

As the object of this study, spearmint (Mentha spicata L.), a perennial herbaceous plant
of the genus Mentha, family Lamiaceae, was selected. The choice of Mentha is due to its wide
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