
6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1-3, 2009

 330

I. INTRODUCTION

Today, everyone, who uses C/C++/C# languages
or others, as his programming language, uses memory
allocation. To understand how memory gets allocated
within your program, you first need to understand how
memory gets allocated to your program from the operating
system. Each process on your computer thinks that it has
access to all of your physical memory. Obviously, since
you are running multiple programs at the same time, each
process can't own all of the memory. What happens is that
your processes are using virtual memory. If you've done
much C programming, you have probably used malloc()
and free() quite a bit. However, you may not have taken the
time to think about how they might be implemented in your
operating system.

II. MEMORY MANAGEMENT
In computer science, dynamic memory allocation is the
allocation of memory storage for use in a computer
program during the runtime of that program. It can be seen
also as a way of distributing ownership of limited memory
resources among many pieces of data and code.
Dynamically allocated memory exists until it is released
either explicitly by the programmer, exiting a block, or by
the garbage collector. This is in contrast to static memory
allocation, which has a fixed duration. It is said that an
object so allocated has a dynamic lifetime.
Usually, memory is allocated from a large pool of unused
memory area called the heap (also called the free store).
Since the precise location of the allocation is not known in
advance, the memory is accessed indirectly, usually via a
reference. The precise algorithm used to organize the
memory area and allocate and deallocate chunks is hidden
behind an abstract interface.

III. C-STYLE MEMORY ALLOCATORS
The C programming language provides two functions to

fulfill our three requirements:
malloc: This allocates a given number of bytes and

returns a pointer to them. If there isn't enough memory
available, it returns a null pointer.

free: This takes a pointer to a segment of memory
allocated by malloc, and returns it for later use by the
program or the operating system (actually, some malloc
implementations can only return memory back to the
program, not to the operating system).

There also exist such functions as realloc and calloc, but
these will be skipped at this time.

III.I malloc
The malloc function is one of the functions in standard C

to allocate memory. Its function prototype is
void *malloc(size_t size);

which allocates size bytes of memory. If the allocation
succeeds, a pointer to the block of memory is returned,
otherwise a null pointer is returned.

malloc returns a void pointer (void *), which indicates
that it is a pointer to a region of unknown data type.

Memory allocated via malloc is persistent: it will
continue to exist until the program terminates or the
memory is explicitly deallocated by the programmer (that
is, the block is said to be "freed"). This is achieved by use
of the free function. Its prototype is

void free(void *pointer);
which releases the block of memory pointed to by

pointer. pointer must have been previously returned by
malloc, calloc, or realloc and must only be passed to free
once.

III.II calloc
malloc returns a block of memory that is allocated for

the programmer to use, but is uninitialized. The memory is
usually initialized by hand if necessary—either via the
memset function, or by one or more assignment statements
that dereference the pointer. An alternative is to use the
calloc function, which allocates memory and then
initializes it. Its prototype is

void *calloc(size_t nelements, size_t elementSize);

Creating a benchmark using C memory
allocation functions

Abstract — Worldwide, C is the first or second most popular language in terms of number of developer
positions or publicly available code.

This thesis presents the ways, possibilities and types of memory management in C language.
Memory management is one of the most fundamental areas of computer programming. In many scripting

languages, you don't have to worry about how memory is managed, but that doesn't make memory
management any less important. Knowing the abilities and limitations of your memory manager is critical for
effective programming. In most systems languages like C and C++, you have to do memory management.

Index Terms — allocators, c-style memory allocators, memory allocation, memory leak.

Lopatenco Andrei Kulev Mihail
Technical University of Moldova

icmcs@mail.utm.md, azzymd@gmail.com, mkmk@mail.ru

6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1-3, 2009

 331

which allocates a region of memory, initialized to 0, of
size nelements × elementSize.

III.III realloc
It is often useful to be able to grow or shrink a block of
memory. This can be done using realloc which returns a
pointer to a memory region of the specified size, which
contains the same data as the old region pointed to by
pointer (truncated to the minimum of the old and new
sizes). If realloc is unable to resize the memory region in
place, it allocates new storage, copies the required data, and
frees the old pointer. If this allocation fails, realloc
maintains the original pointer unaltered, and returns the
null pointer value. The newly allocated region of memory
is uninitialized (its contents are not predictable). The
function prototype is
void *realloc(void *pointer, size_t size);
realloc behaves like malloc if the first argument is NULL:
void *p = malloc(42);
void *p = realloc(NULL, 42); /* equivalent */

IV. MEMORY LEAK
When a call to malloc, calloc or realloc succeeds, the return
value of the call should eventually be passed to the free
function. This releases the allocated memory, allowing it to
be reused to satisfy other memory allocation requests. If
this is not done, the allocated memory will not be released
until the process exits — in other words, a memory leak
will occur. Typically, memory leaks are caused by losing
track of pointers, for example not using a temporary pointer
for the return value of realloc, which may lead to the
original pointer being overwritten with a null pointer.

V. CONCLUSION
First of all it’s important to mention from the very

beginning that without memory allocation functions we
couldn’t get well-optimized programs, as we do have now.
Memory allocation function allows us to improve the speed

of the program, and to store as much information in
memory, as needed, therefore, to optimize the program
while running, because the physical memory is not
occupied with trash.

The C language brings a lot of possibilities in memory
management at each place, and each time we need.
Functions are easy in use, and very fast-working.

REFERENCES
[1] Bruce Eckel. Thinking in C++, 2nd Edition, Volume

1,2.Revision: 13 Last Modified: September 27,
2001.

[2] Dr. Kris Jamsa & Lars KlanderTotul despre C şi C++.
Teora 2001.

[3] http://staff.um.edu.mt/csta1//courses/lectures/csa2
060/c8a.html

[4] http://www.cantrip.org/wave12.html

[5] http://www.memorymanagement.org/glossary/c.h
tml

[6] http://www.bradrodriguez.com/papers/ms/pat4th‐
c.html

[7] http://en.wikibooks.org/wiki/C_Programming/Me
mory_management

[8] http://www.mycplus.com/tutorials/cplusplus‐
programming‐tutorials/memory‐management/

[9] http://www.codeguru.com/forum/showthread.php
?t=401848

[10] http://www.cs.wustl.edu/~schmidt/PDF/C++‐mem‐
mgnt4.pdf

