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Abstract — This work provides an exact analytical dynamics of a cantilever beam bonded with a piezoelectric 
patch to extract the modal frequencies under open circuit and short circuit electrodes’ conditions. The modal open 
circuit and short circuit frequencies are then used to calculate the corresponding modal Electro-Mechanical 
Coupling Coefficient (EMCC), which is considered as an influential parameter in the design of piezoelectric based 
devices such as energy harvesters and smart structures. A parametric analysis is then performed to optimize the 
length and the thickness of the piezoelectric patch for maximum modal EMCC.     

Index Terms — beam, energy harvesting, optimization, piezoelectric, vibration. 
 

 

I. INTRODUCTION 

Piezoelectric materials have been the focus of intensive 
research efforts over the last few decades due to their 
superior electromechanical behavior. These materials are 
widely used in many engineering applications as sensors, 
actuators. In the past few years, the demand on 
piezoelectric based energy harvesters that can perform as 
miniature self-contained power supplies has highly 
increased due to the advancement in integrated circuit 
technology [1]. A crucial performance factor of a 
vibration based piezoelectric energy harvester is the so 
called modal Electro-Mechanical Coupling Coefficient 
(EMCC). The modal EMCC is a ratio that relates the 
amount of electric energy developed by the piezoelectric 
material to the total elastic energy of the vibrating 
structure at some known mode. To determine the modal 
EMCC, the free vibration problem of the piezoelectric 
structure should be solved for both Open Circuit (OC) and 
Short Circuit (SC) electrode conditions. Due to the 
sensitivity of the EMCC to OC and SC modal frequencies, 
accurate determination of those frequencies is mandatory.  
 
Examples of early efforts in analytical modeling of 
piezoelectric beam structures are the works by Bailey and 
Hubbard [2], Crawley and Luis [3], and Hagood et al [4]. 
Numerical modeling of piezoelectric structures, which is 
not the subject of this paper, has received also a great 
attention for all types of structures as reviewed by 
Benjeddou [5]. Tong and Luo [6] derived the equations of 
motion from partial differential forms for a thin 
piezoelectric smart beam. In their work, exact dynamic 
solutions, including peel stress, were obtained by using a 
time-separable solution. In a recent work, Erturk an Inman 
[7] derived a distributed parameter model for a thin 
cantilevered beam fully covered with a piezoceramic 
layer. The equations of motion were obtained for general 
transient base motion with separate damping coefficients 
defined for both internal material damping and external air 
damping. The analytical solution was developed for the 

coupled electromechanical equations under the common 
assumption of constant electric field across the 
piezceramic layer. Maurini et al [8] used enhanced 
assumed modes with special jump functions that account 
for material discontinuities between the segments of 
stepped piezoelectric beam. Their natural frequencies 
were compared with the exact ones obtained by finding 
the roots of the dynamic stiffness matrix equation. 
Burmann et al [9] derived a closed-form, time-separable 
solution for a cantilever beam partially covered with 
symmetric piezoceramic layers. Their fully-coupled 
analytical model counted for the higher order electric field 
in the piezoelectric material through Gauss law of 
electrostatics. Bsak et al [10] extended the last mentioned 
work to asymmetric case where a single piezoceramic 
layer partially covers the cantilever beam. Maxwell and 
Asokanthan [11] used the time-separable solution to 
obtain exact modes and natural frequencies of thick beams 
with multiple distributed actuators but without inclusion 
of any active piezoelectric properties. Although exact, 
time-separable analytical solutions are useful for simple 
structures, but they get really involved for complex 
structures due to the large number of unknowns. 
 
Another way of finding a closed form dynamic solution is 
the transfer matrix method [12]. In this method, a spectral 
transfer matrix is formulated for one segment (cell) of the 
distributed parameter system for which the input and 
output vectors are made of both  kinematical variables and 
internal forces. In the vicinity of active structures, Baz 
[13] introduced the concept of transfer matrix for periodic 
spring-mass systems controlled by piezoelectric actuators, 
and his work has been extended to active and passive 
control of periodic rods with piezoelectric actuators [14]. 
However, for structures made of many cells, the transfer 
matrix of the whole structures is found by chain product 
of those for the unit cells, which may result in significant 
round-off errors [15]. Yang and Tan [16] developed a 
special scheme to determine closed-form transfer 
functions for distributed parameter systems.  
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In this work, the DTF will be developed for a cantilever 
beam, partially covered with a single piezoelectric patch 
to determine the OC and SC modal frequencies, hence the 
modal EMCC. A simple extension of the DTF for beams 
with multiple piezoelectric patches is performed, and the 
model is validated with the exact solution. A parametric 
analysis is finally done to optimize the size of the 
piezoelectric patch.    

II. MATHEMATICAL MODELING 

Consider a thin elastic beam, with one surface bonded 
piezoelectric patch, divided into three regions as shown in 
Fig. 1. The first and last regions are made only of an 
elastic material while the second one additionally contains 
a piezoelectric layer completely covering the elastic one. 
The Euler-Bernoulli in-plane strain is given by  

                             1 u zwε ′ ′′= −  (1) 
Where u and w are the in-plane and transverse 
deformation, respectively, and the number of primes 
denote the number of differentiation with respect to the x 
coordinate. The constitutive equations for the piezoelectric 
beam are 

                        

1 11 1 31 3

3 31 1 33 3

EC e E

D e Eε

σ ε

ε

= −

= +∈
 (2) 

 
Where σ , E and D denote, respectively, the stress, 
electric field and electric displacement, while e, C and ∈ 
stand for the piezoelectric, elastic, and dielectric 
constants, all in reduced form. Also, superscripts E andε  
represent properties measured at constant electric field and 
constant strain, respectively.  
The electric field is defined from the electric 
potentialϕ by 

        3 ,3E ϕ= −  (3) 
Where subscript ,3 stands for differentiation through the 
thickness (3 or z) direction. Gauss’ law of electrostatics 
for a dielectric states that  

        3,3 0D =  (4) 
The electric boundary conditions are introduced through 
the potential difference between electrodes, V, such that

 
                      

( ) ( ) Vptϕ κ ϕ κ+ − =  (5) 

 
Substituting the strain and electric field definitions in the 
electric displacement, applying (4), and using the electric 
boundary conditions, the electric potential can be found 
[17], from which the electric field is determined by (3) to 
be 

           
( )3 31 33V/ ( / )p xxE t z e wεα= − − − ∈  (6) 

Where / 2ptα κ= +  is the distance from the composite’s 
neutral axis to the mid-plane of the piezoelectric layer. 
Note that the electric field is made of two components: the 
usually assumed potential difference over the thickness, 
and the induced electric field due to the deformation of the 
beam, which will contribute to the flexural rigidity of the 
beam as will be seen later.  

To derive the governing equations of motion for 
the middle section, Hamilton's principle is first applied 

               
2

1
( ) 0t

t
T H W dtδ δ δ− + =∫  (7) 

Where, Hδ is the virtual electric enthalpy of the thin 
piezoelectric beam defined on the volume V by: 

         
1 11 1 1 31 3

3 31 1 3 33 3

(  

)

E
V

H C e E

E e E E dVε

δ δε ε δε

δ ε δ

= −

− − ∈

∫
               (8)          

 

In addition, Tδ  is the virtual kinetic energy given by: 

           
(   )

V
T m u u w w dVδ δ δ= +∫ & & &  (9) 

Where m denotes the total mass of both layers per unit 
length. Assuming no external forces , the virtual work is 
done only by the electric potential and point charge q on 
the surface S such that  

                   S
W q dSδ δϕ= −∫  (10) 

Applying the previous variations and collecting relevant 
terms, the following set of mechanical equations are 
obtained 

                     

0
0

mu ku
mw dw

′′− =
′′′′+ =

&&

&&
 (11) 

1 1

2
1 1 3 1 3 3

,

( / )

E
b b p p b b p

E
b b p p

m t t k E t C t

d E I C I e Iε

ρ ρ= + = +

= + + ∈
 

With ρ , A and E denoting the density, cross section area 
and Young’s modulus of elasticity in longitudinal 
direction, respectively. Subscript b represents quantities 
for the beam layer while those for the piezoelectric layer 
are represented by p. Also 3 / 3i iI t=  (i = b,p) is the 
moment of inertia of layer i about its own mid-plane and 

iI  is the inertia of that layer about the  composite’s 
neutral axis, which is given for both layers by 

( )b b b bI t t Iκ κ= − + , ( )p p p pI t t Iκ κ= + +
     

(12)
 

It is worth to note that the last term in d is an added 
flexural rigidity to the beam due to the induced electric 
field as previously mentioned. 
 

 
(a) 

 
(b) 

 
Fig. 1. a) Cantilever beam with piezoelectric patch  

b) Segmentation of the beam  
 
The third resulting electromechanical equation states that 

x = x0 x = x1 x = x2 x = x3  

tp 

tb 

κ 

Piezoelectric 
patch Elastic beam

x

z 
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2

1

31 31 33
V( )

x

p
px S

e t u e w dx qdS
t

εα′ ′′− + +∈ = −∫ ∫  (13) 

The resulting boundary conditions of the piezoelectric 
layer at x1 or x2  are 

31

31

V 0, or 0

V 0, or 0

0, or 0

p
p

p
p

ku e A u
t

dw e A w
t

dw w

α

′ + = =

′′ ′− = =

′′′ = =

 (14) 

Which represent the essential and natural boundary 
conditions required for applying the displacement and 
force continuity between at both ends of the middle 
region.  
 

III. DISTRIBUTED TRANSFER FUNCTION 
 
The equations of motion are first transformed to the 
Laplace domain. The transformed equations are cast into a 
state space form where the state vector is made of the 
deformation vector D(x,s), and the strain vector P(x,s) as 
follows [16] 

                      

( , )
( , )

( , )i
i

D x s
Y x s

P x s
 

=  
 

 (15) 

Where
 

{ }( , ) , , T
i i iD x s u w w′= ,  

{ }( , ) , , T
i i i iP x s u w w′ ′′ ′′′= , i = 1,2,3 

 
Where x and s are dropped from the variables for 
simplicity. The matrix equations of motion, in state space 
form, is given by 

 

( , ) ( ) ( , )i i iY x s F s Y x s
x
∂

=
∂

 (16) 

Such that 

2

2

0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0

( )
/ 0 0 0 0 0

0 0 0 0 0 1

0 / 0 0 0 0

i
i i

i i

F s
m s k

m s d

 
 
 
 
 =
 
 
 
 − 

 

 
with m1 = m3 = m, m2 = mb, k1 = k3 = k, k2 = kb, d1 = d3 = d, 
d2 = db  
 
The boundary and displacement continuity conditions are 
cast in the following matrix equations 

                 1( , ) ( , ) ( )i i i i i i iM Y x s N Y x s sγ− + =        (17) 

Where  

iM
 

=  
 

I 0
0 0

, 1 2N N
 

= =  
 

0 0
I 0

,

 3

0 0
0 0
0 0

k
N d

d

 
 =  
  

      

with I and 0 denoting 3 3×  identity and zero matrices, 
respectively, and 
 

1
1

( )
( , )

s
D x s

γ
 

=  
 

0
,    1

2
2

( , )
( )

( , )
D x s

s
D x s

γ
 

=  
 

,    

2
3

( , )
( )

D x s
s

f
γ

 
=  
 

,  { }00 0 Tf f=  

 
Similarly, the force continuity conditions of (14) can be 
cast in the following matrix form 

1 1

1 2 2 1

2 3 2 2

3 2

( , )
0 0 ( , ) V

0 0 ( , ) V
( , )

P x s
B B P x s

B B P x s
P x s

 
 −       =    −      
  

 (18) 

where 

1 3

0 0
0 0
0 0

b

b

b

k
B B d

d

 
 = =  
  

,   2 3B N= , 

31
1V

V
0

p

p

e A

t
α

 
 = − 
 
 

 

 
The solution of the state space equation for each region is 
given by [17] 
 

        

( , ) ( , ) ( )

( ) ( )
( )

( ) ( )

i i i
aa ab
i i

iba bb
i i

Y x s x s s

x x
s

x x

γ

γ

= Ψ

 Ψ Ψ
=  

Ψ Ψ  

 (19) 

Where  

       
1

1
( , ) i i i i iF x F x F x

i i ix s e M e N e−
−

 Ψ = +   
(20) 

With each of pr
iΨ (p,r = a,b) as a 3 3 matrix that is 

made by partitioning of iΨ . Upon substitution of the 
definitions of Yi and iγ  in (19) for the three regions, the 
following matrix equation can be formed at the common 
interfaces between the three regions 

1 11 1

2 1 2 1 2 1 1

2 2 22 2 2 2

3 2 3 2

( ) 0( , )
( , ) ( ) ( ) ( , )
( , ) ( , )( ) ( )
( , ) 0 ( )

bb

ba bb

ba bb

ba

xP x s
P x s x x D x s
P x s D x sx x
P x s x

 Ψ     Ψ Ψ     =    
Ψ Ψ     

     Ψ 

 (21) 
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substituting the last equation in (18), the result is the 
dynamic matrix equation of motion 

                      
2( ) ( )K s s Fγ =  (22) 

 
 
with 

1 1 1 2 2 1 2 2 1

2 2 2 3 3 2 2 2 2

( , ) ( , ) ( , )
( )

( , ) ( , ) ( , )

bb ba bb

ba ba bb

B x s B x s B x s
K s

B x s B x s B x s

 Ψ − Ψ − Ψ
= 

− Ψ Ψ − Ψ  
                              

,  
V
V

F
  =  
  

 (23) 

 
IV. ELECTRICAL BOUNDARY CONDITIONS 

 
As previously mentioned, obtaining OC and SC 
frequencies requires correct implementation of the 
electrical boundary conditions. For the SC condition, the 
voltage across the two piezoelectric electrodes vanishes, 
hence V = 0, and the dynamic equation of motion reduces 
to  

 
2( ) ( ) 0K s sγ =  (23) 

In OC condition, the total surface charge, qd
Ω

Ω∫ , 

vanishes which reduces equation (13) to  

( )2 2

1 1

31

33 2 1

V | |
( )

p x x
x x

e t
u w

x xε
α ′= −

∈ −
 (24) 

Which can be rewritten in the following matrix form  

 
2 ( )F B sγ= −  (25) 

where 

   

2

0

0 0 0
oc

a a

B a d a

α

α α α

− 
 

= − 
 
 

  
2
31

33 2 1( )
pe t

a
x xε

=
∈ −

 

 
As a result, the last equation is substituted back in (22) 
resulting in a modified dynamic equation of motion 

                   2( ) ( ) 0K s B sγ + =   (26) 
Finally, the SC and OC frequencies are the values that 
force the determinant of the dynamic transfer matrix to 
vanish in both cases. Noting that s jω= , the 
characteristic equations for the SC and OC conditions can 
be written, respectively, as  

[ ]det ( ) 0K jω =  ,   det ( ) 0K j Bω + =   (27) 

V. MULTIPLE PIEZOELECTRIC ACTUATORS 
 

The DTF solution is extended in this section to account 
for multiple piezoelectric actuators on a cantilever beam 
as shown. 

 
Fig. 2.  beam with multiple piezoelectric patches  

 
For n+1 segments, the force continuity conditions, 
equation (18), can be written in the following matrix form 

 
[ ]{ } { }=B P F  (28) 

Where 
 

1 2

2 3

1

1

0 0 0 0
0 0 0 0

[ ]
0 0 0 0
0 0 0 0

n n

n n

B B
B B

B B
B B

−

+

− 
 − 
 =
 

− 
 − 

B

L

L

M O M

L

L

, 

1 1

2 1

1

( , )
( , )

[ ]
( , )
( , )

n n

n n

P x s
P x s

P x s
P x s+

 
 
  =  
 
 
  

P M ,   

1

2

1

[ ]

n

n

V
V

V
V
−

 
 
  =  
 
 
  

F M

  
Similarly, (21) can be extended for the n+1 segments and 
rewritten as follows 

 
{ } [ ]{ }=P Ψ D  (29) 

Such that 
 

[ ]

1 1

2 1 2 1

1

( , ) 0 0

( , ) ( , )

( , ) ( , )

0 ( , )

bb

ba bb

ba bb
n n n n

ba
n n

x s

x s x s

x s x s

x s+

 Ψ
 
Ψ Ψ 
 =  
 Ψ Ψ 
 Ψ 

Ψ

L

M O M

L

1

2

1

( , )
( , )

[ ]
( , )
( , )

n

n

D x s
D x s

D x s
D x s

−

 
 
  =  
 
 
  

D M

 

 
Substituting equation (29) in (28), the dynamic matrix 
equation of motion for n+1 segments reads 
 

                    [ ]{ } { }=K D V  (30) 
 
where [ ] [ ][ ]=K B H is the dynamic “stiffness” transfer 
matrix.  For the OC condition, the following matrix 
equation is obtained from the voltage across the electrodes 
of all the piezoelectric patches 

x0 x1 x2 x3 x4 xn-2 xn-1 xn xn+1 
1 2 3 4 n-1 n n+1 . . . . . .  
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{ } { } =  
ocV B D  (31) 

where 

1 2

1 2

1 2

1

0 0

0
0 0 0 0

0

0 0

oc oc

oc oc

oc oc
n
oc oc
n n

B B

B B

B B

B B
−

−

 −
 
− 
   =   
 − 
 − 

ocB

L

M M

O

M L

L
 Finally, combining the last two equation together results 

in the global equation of motion required to solve for the 
OC frequencies of the system 

           
[ ]( ){ } { }− =ocK B D 0  (32) 

VI. RESULTS 
 

The modal Effective Electromechanical Coupling 
Coefficient (EMCC) is known as a critical parameter in 
justifying the performance of piezoelectric materials since 
it describes the efficiency of converting mechanical strain 
to electric charges and vice versa. For a vibrating 
structure, the modal EMCC for mode r, kr

2, is defined by 
[9] 

            

2 2
2

2

( ) ( )
( )

oc sc
r r

r sc
r

k
ω ω

ω
−

=  (33) 

Where ocω and scω are the natural frequencies of the 
structure under the OC and SC boundary conditions for 
the rth mode.  
For validation of the proposed analytical solution, 
consider a miniature 2.7-cm cantilever beam that has Eb = 
100 GPa, bρ = 8400 kg/m3 and tb = 1 mm.  The left end 
(x1) of the piezoelectric patch is 0.5-mm away from the 
fixed end of the beam with tp = 0.178 mm, pρ = 7800 

kg/m3, 11
EC =62 GPa, 31e = -19.84 C/m2 and 33

ε∈ = 33.64 
nF/m. As can be seen in Table 1, the natural frequencies 
obtained by the current DTF method are identical to the 
ones obtained by the exact, time-separable, solution of the 
differential equation [10].  
A parametric analysis has been performed to optimize the 
length and thickness ratios of the piezoelectric patch for 
maximum modal EMCC. It can be seen that the optimum 
parameters are dependable on the mode number. For the 
first mode a maximum EMCC of 0.05 is obtained when 
the thickness of the piezoelectric patch is half that of the 
beam, and its coverage ratio is about half the length of the 
beam. As for the second mode, a max EMCC of 0.029 
occurs for the highest thickness and length ratios of the 
piezoelectric patch. 

 
TABLE I.   

OC / SC natural frequencies and modal EMCC: Analytical vs. DTF   
 

 Mode 1 Mode 2 
 ω sc ω oc k2(%) ω sc ω oc k2(%) 

Analytical  116.01 116.28 0.45 586.70 586.70 0.43 
DTF 116.01 116.28 0.45 587.96 587.96 0.43 
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(b) 

 
Fig. 3. Variation of the EMCC with piezoelectric patch  

thickness and length ratios a) 1st mode b) 2nd mode 
 
 

VII. CONCLUSION 
 
The current modeling approach of the free vibrations of 
piezoelectric structures is systematically simple and 
requires no previous assumption of the solution type. 
Noting that the definition of EMCC is very sensitive to 
frequency predictions, the DTF method under 
consideration is of special interest in the design of 
piezoelectric energy harvesting devices since the exact 
frequencies can be easily calculated, leading to exact 
determination of the modal EMCC which is an ultimate 
design parameter. Parametric analysis can be easily 
performed then to optimize the size of the piezoelectric 
patch which was shown to be dependent on the resonance 
mode of vibration. 
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