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Abstract— The Schwinger's oscillator model of angular 

momentum is applied to define quantum logical elements in 

quantum circuits by means of wave functions of two 

independent harmonic  oscillators.  It is shown how four 

EPR entangled states can be determined based on this 

model. 
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I. INTRODUCTION  

Unlike calculations in classical computer science, 

based on the concept of a bit, quantum computer science 

uses the concept of a quantum bit (qubit). A qubit is a 

quantum system that can be in two states |0⟩ and |1⟩ (the 

Dirac notations [1] are used). An example of such systems 

is an electron with two spin orientations or a photon with 

two possible polarizations. In the general case, the state of 

a qubit is given by a superposition of basis vectors |0⟩ and 

|1⟩ with coefficients α and β satisfying the condition 

|α|
2
+|β|

2 
= 1, which follows from the normalization 

condition for the qubit wave function. The fundamental 

difference between a qubit and a bit is that a qubit can be 

simultaneously in states |0⟩ and |1⟩ (the coefficients α and 

β are simultaneously different from zero). This actually 

determines the difference in the ways of constructing 

classical and quantum computers. We note that at present 

quantum computers are not yet mass-produced, but 

experimental samples have already been built (see, for 

example, the results of calculations carried out on one of 

them [2]). 

To describe multi-qubit systems, it is convenient to 

introduce the effective spin S = 2
(N-1)

-1/2  [3], where N is 

the number of qubits. The N-qubit system is characterized 

by 2S+1 states |S, S⟩, |S, S-1⟩, |S, S-2⟩, …, |S, 2-S⟩, |S, 1-

S⟩, |S, -S⟩. Any N-qubit system can be in any of these 

states, as well as in any state of their superposition. 

The Schwinger oscillator model of angular momentum 

[4] can be used to conduct quantum computing [3]. In this 

case, it is necessary to convert single- and multi-qubit 

logical elements from the spinor representation to the two-

boson one. This article discusses some of the features of 

applying the two-boson Schwinger representation of the 

effective spin to quantum computing 

II. ON TWO-BOSONIC SCHWINGER REPRESENTATION 

OF ANGULAR MOMENTUM                                                                   

The two-boson Schwinger representation for the 

effective spin is realized using two types of independent 

harmonic oscillators. We denote by 1 1,A A
 and 2 2,A A

the Bose operators of creation and annihilation 

corresponding to these harmonic oscillators. Then, in the 

system of units in which Planck's constant ħ=1, the spin 

projection operators Sx, Sy, and Sz are defined by the 

expressions [4] 

   

 

1 2 2 1 1 2 2 1

1 1 2 2

1 1
, ,

2 2

1

2
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z
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 

   

 

    (1) 

The spin wave function in the two-boson Schwinger 

representation of the angular momentum has the form 

   
   1 21/2

1
, 0

! !

S M S M

S M A A
S M S M

 
 

   

   (2) 

where |0⟩ denotes the vacuum state |0⟩ = |0⟩1|0⟩2. 

III. LOGICAL ELEMENTS OF A ONE-QUBIT SYSTEM IN A 

TWO-BOSON REPRESENTATION OF THE EFFECTIVE SPIN 

S=1/2 

A. Logical element NOT (or Pauli-X) 

In the two-boson representation of the effective spin S 

= 1/2, the Pauli-X logical element of the one-qubit system 

has the form 

  1

1 2 1 2 2 1

2

0 1
.

1 0

A
X A A A A A A

A

     
    

  

 (3) 

Let us act by operator X on the wave function of the 

qubit 
1 2 1 2

1 0 0 1    : 
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 1 2 2 1 1 2

1 2 1 2 1 2

( 1 0

0 1 ) 1 0 0 1

X A A A A 

  

   

 
  (4) 

It can be seen that as a result of such an action, the 

coefficients   and   in the original qubit are reversed 

(that is,     and   ).  

The normalized eigenvectors of operator X in the 

representation of paired bosons have the form 

 
1,2 1 2 1 2

1
1 0 0 1 .

2
    (5) 

B. Logical element Z (or Pauli-Z) 

In the two-boson representation of the effective spin S 

= 1/2, the Pauli-X logical element of the one-qubit system 

has the form   

   1

1 2 1 1 2 2

2

1 0
.

0 1

A
Z A A A A A A

A

     
    

  

(6) 

Under action of operator Z on the wave function of a 

qubit
1 2 1 2

1 0 0 1    , we obtain 

 1 1 2 2 1 2

1 2 1 2 1 2

( 1 0

0 1 ) ( 1 0 0 1 ).

Z A A A A 

  

    

 
  (7) 

As can be seen from (7), the operator Z does not 

change the coefficient at the basis vector 
1 2

1 0 and 

changes the sign of the coefficient at the basis vector

1 2
0 1 .The eigenvectors of the operator Z coincide 

with the eigenvectors 
1 2

1 0 and 
1 2

0 1 . 

C. Hadamard gate H  

In the spinor basis, the Hadamard logical element is 

given by the matrix [3] 

1 11
.

1 12
H

 
  

 
  (8) 

In the two-boson representation, the operator H has the 

form 

1 1 2 2 1 2

1
( )

2

1
( ) ( ) ,

2

H X Z

A A A A A A 

  

    

 (9) 

where X and Z are real Pauli matrices. 

The action of the operator H on the wave function of 

the qubit |Ψ⟩ leads to the following result: 

1 1 2 2 1 2 1 2 1 2

1 2 1 2

1
( ) ( ) ( 1 0 0 1 )

2

1
( ) 1 0 ( ) 0 1 .

2

A A A A A A

b

 

  

       

    

(10) 

The normalized eigenvectors of the Hadamard operator H 

have the form 

1,2 1 2 1 2

1
1 0 ( 2 1) 0 1

4 2 2
   
 

   (11) 

which agrees with the results for 
1

  and 
2

  in the 

spin representation. 

D. Logical element Y 

The logical element Y in the two-boson representation 

has the form 

   1

1 2 2 1 1 2

2

0
.

0

Ai
Y A A i A A A A

Ai

   
   

    
  

 (12) 

Under the action of the oparator Y, the wave function 

of the qubit |Ψ⟩ transforms to the form 

  

 

2 1 1 2 1 2 1 2

1 2 1 2

1 0 0 1

0 1 1 0 .

i A A A A

i

 

 

   



   (13) 

It can be seen that the coefficient α at the basis vector 

1 2
1 0 goes into i  and the coefficient   at the basis 

vector 
1 2

0 1  goes into i . The normalized 

eigenvectors of the operator   have the form 

 
1,2 1 2 1 2

1
1 0 0 1

2
i     

 (14) 

E. Logical phase element T 

The complex logical phase element T (which is also 

denoted by π/8) in the spinor representation is given by 

the matrix 

1 0
.

0 exp( / 8)
T

i

 
  
 

   (15) 

In the two-boson representation, the logical element  T 

is determined by the expression  

  1

1 2

2

1 1 2 2

1 0

0 exp( / 8)

exp( / 8)

A
T A A

Ai

A A i A A





 

 

  
   

  



  (16) 

The operator T acts on the qubit wave function 

according to the rule: 

 

 

 

1 1 2 2 1 2 1 2

1 2 1 2

exp / 8 ( 1 0 0 1 )

1 0 exp / 8 0 1 .

T A A i A A

i

  

  

       



(17) 

Thus, the operator T does not change the coefficient at 

the basic vector
1 2

1 0  and changes the phase of the 
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coefficient at the basis vector
1 2

0 1 . It can be shown 

that the eigenvectors of the operator T coincide with the 

basic vectors 
1 2

1 0 and 
1 2

0 1 . 

F. Logical phase element S 

In the two-bosonic representation, the logical phase 

element S (not to be confused with the spin operator) is 

defined by the expression 

  1

1 2 1 1 2 2

2

1 0
.

0

A
S A A A A iA A

Ai

     
    

  

 (18) 

Under the action of the operator S, the wave function 

of the qubit is transformed as follows 

1 1 2 2 1 2 1 2

1 2 1 2

( )( 1 0 0 1 )

1 0 0 1

A A iA A

i

 

 

   


        (19) 

Transformation (19) does not change the coefficient α 

at the basis vector 
1 2

1 0 , but multiplies by i the 

coefficient   which is at the basis vector 
1 2

0 1 . The 

eigenvectors of the operator S coincide with the basic 

eigenvectors 
1 2

1 0 and 
1 2

0 1 . 

G. Logical phase element Ф 

By definition, the logical phase element Ф is given in 

the two-bosonic representation by the operator  

  1

1 2

2

1 1 2 2

1 0

0 exp( )

exp( ) .

A
A A

Ai

A A i A A





 

 

  
    

  



    (20) 

where φ is the angle of rotation of the state vector of the 

qubit |Ψ⟩, starting at the center of the Bloch sphere and 

ending at the surface of the sphere. Rotation is around the 

z-axis. The basis vector 
1 2

1 0  is oriented along this 

axis, and the basis vector 
1 2

0 1  is oriented in the 

opposite direction. The action of the operator Ф on the 

qubit state vector is determined by the expression 

 

 

1 1 2 2 1 2 1 2

1 2 1 2

exp( ) ( 1 0 0 1 )

1 0 exp 0 1 .

A A i A A

i

  

  

 

  

   

 

   (21) 

According to (21), the action of the operator Ф on the 

state vector |Ψ⟩ of the qubit does not change the 

coefficient α at the basis vector |
1 2

1 0 and multiplies 

the coefficient β at the basis vector 
1 2

0 1 by the factor 

 exp i . The eigenvectors of the operator Ф coincide 

with the basis vectors 
1 2

1 0  and 
1 2

0 1 . 

IV. EPR STATES IN TWO-BOSON REPRESENTATION OF 

THE EFFECTIVE SPIN 

Let a quantum circuit contains the quantum logic 

element CNOT (I is the unitary operator): 

1 2 2 1

0
,

0

I
CNOT

A A A A 

 
  

 

  (22) 

in the control input of which the Hadamard element H is 

included. If two base vectors 
1 2

1 0 are applied to both 

inputs of the circuit, then one of them will go immediately 

to the controlled input of element CNOT, while the 

second will go to the control input of the CNOT after 

passing the element H (Fig. 1). 

 

 

Figure 1.  Quantum scheme for creating the EPR [5] or Bell [6] 

states. 

 The gate H transforms the basis vector 
1 2

1 0 as 

follows: 

 

   

1 1 21 2

2 1 2 1 2 1 2 1 2

1
1 0 [

2

1
] 1 0 1 0 0 1

2

H A A A

A A A





  

  

 (23) 

It can be shown that in this case, the input of logical 

element CNOT is the vector  
1 2 1 2

1
3 1 1 2

2
  

which, after passing the element CNOT, is converted to 

the Bell state  

 00 1 2 1 2

1
3 0 0 3

2
      (24) 

The other three Bell states are found similarly in the 

two-boson representation: 
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 

 

 

01 1 2 1 2

10 1 2 1 2

11 1 2 1 2

1
2 1 1 2

2

1
3 0 0 3

2

1
2 1 1 2

2







 

 

 

   (25) 

DISCUSSION AND CONCLUSIONS 

In the two-boson representation of an effective spin S, 

a one-to-one correspondence between the discrete energy 

spectrum of a spin system with a finite number of degrees 

of freedom and the energy spectrum of two harmonic 

oscillators with an infinite number of degrees of freedom 

is possible only in one case.  

To do this, it is necessary to introduce a limit on the 

number of oscillatory states. Namely, to depict spin states 

using the states of two harmonic oscillators, only those 

bosonic states must be  involved that satisfy the condition 

n1 + n2 ≤ 2S, where n1 and n2 are the occupation numbers 

of the bosonic states related to oscillators 1 and 2. Taking 

into account (2), the 2S + 1 spin states acquire in the two-

boson representation the form 

1 2 1 2 1 2

1 2 1 2

2 0 , 2 1 1 ,..., ,...,

1 2 1 , 0 2 .

S S S M S M

S S

  


  

Based on the above, the following conclusions can be 

drawn:  

1. The Schwinger’s oscillator model of angular 

momentum can be used to determine logical quantum 

elements, as well as logical quantum circuits of single- 

and multi-qubit systems in quantum computing. 

2. The application of the two-boson representation of 

angular momentum to quantum computing may be useful 

due to the peculiarities of this representation for one- and      

multi-qubit systems 

3. In the case of N-qubit systems, the form of spin 

operators in the two-boson representation does not depend 

on the value of N that can lead to simplifications in 

quantum calculations in some particular cases.  
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