
Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Chisinau, Republic of Moldova, March 29-31, 2022, Vol. I

- 301 -

DOMAIN SPECIFIC LANGUAGE FOR SOLVING GENETICS PROBLEMS

Vasile CEBAN, Damian GROSU, Lina SCRIPCA*, Andrei ZACATOV

Software Engineering, FAF-201, Faculty of Computers, Informatics and Microelectronics, Technical University of

Moldova, Chișinău, Republic of Moldova

*Corresponding author: Scripca, Lina, lina.scripca@isa.utm.md

Abstract. This article describes a Domain Specific Language for solving genetics problems that
require the usage of Punnett Square. Subsequently, this paper delves into the syntaxis, functionality
and creation of the language, as well as the steps required for its proper usage for maximum
automatization of the steps for problem solution.

Key words: domain-specific language, genetics, punnett square, character inheritance.

 Introduction

A Domain Specific Language (DSL) is a language designed to provide a notation tailored
towards an application domain and is based only on the relevant concepts and features of that domain
[1]. Or, in other words, it is a language designed specifically for ease of usage for experts of a specific
domain, with supported for syntactic sugar relevant to that specific domain.

A Punnett square problem is a problem that given the allele (symbolic notations of the genes
carrying a certain hereditary character) of a set of parents, determines the probability of that
character’s propagation in the next generation. For its solution, a parent’s genotypical constitution is
broken down into possible gamete sets, and then combined with all the other possible gametes of the
other parent to obtain a square that would show the distribution of characters of their kids [2].

While the solution seems pretty straightforward, the complexity of finding it rises
exponentially with the number of genes that are being monitored, going from 16 possible cases for 2
sets of alleles, towards 256 cases for 4, creating a large margin for human error on the basis of
attention during their analysis.

Thus, the domain of genetics, and, specifically, the branches that study the Mendelian
character inheritance and population diversity using Punnett square, could benefit from the
automatization of problem solution provided by a DSL.

Solution Concept
The proposed DSL will help solve genetics problems using The Punnett square. The basic tool

will generate predictions of the genotypes of a particular cross or breeding experiment.
The language will be intuitive and require beginner level coding skills and knowledge in

genetics. With the proposed DSL the users will write a code where they will specify the parent, the
notation of the alleles, which alleles are dominant or recessive as well as other necessary parameters
for the studied problem, after which the DSL will be interpreted, executed and computed to get as
output the solutions to the problem, be they a Punnett Square, the possible genotype of a parent, or
information about the inherited genotypes and phenotypes of the next generation, along with their
probability.

Computational Model of the DSL
The basic items of computation in the proposed language are the data held in variables, types

of which will be described in the following paragraph. The problem description model that was
chosen envisions the language as being an object-oriented imperative language, following a Control-
Driven execution style. The main computational methods are build-in and user defined functions,
such as creating a new generation (via a cross function), or processing already achieved data (via a
find <property> statement).

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 29-31 Martie 2022, Vol. I

- 302 -

Data Structures
The proposed language will contain Atomic Data types and Object Types. The atomic data

types will be closely related to already existing languages, while the Object Types will be custom
structures in a vocabulary closely known by people in the specific domain.

Atomic types will include:
Nil / Null - type for everything uninitialized.
Boolean - logical 1 or 0, using 1-byte values.
String - A pointer to an immutable Cstring (zero-terminated string)
Number - An IEEE 754 binary64 type number, more commonly known as a "double" type

variable. Using this datatype for both integers and real numbers aims to reduce the amount of variable
types and hence the confusion, while still maintaining a more than decent integer value range (exact
representation for numbers in the range of ±2^53 exactly and up to ±2^54 with rounding to the nearest
multiple of 4).

Composite / Object types will be represented by:
Gene - A basic unit of genetics, that will contain information about the dominance properties of

the allele variants, their phenotypical label, location, as well as the existence of codominant variants.
Parent - an object containing genes, predefined methods and properties, as well as a

possibility to add custom methods to aid in generalizing the language for broader tasks.
Generation – an object containing several parent candidate organisms as well as the

probability of their manifestation within the generation.
Variables can be initialized with the appropriate variable type keywords followed by the

names of the variables separated by commas. Most atomic data types will be defined with an
appropriate default value, 0 or false for a Boolean, 0.0 for a number variable, while other types will
be initialized as Nil/Null. One can also assign values to already defined variables via a set command.

First Iteration functionality
The first iteration of the proposed language is aiming to provide the following operations to

the end users through the indicated functions:
cross parent x parent – computation of a new generation using the genetical composition of a

set of parents as the base.
find field genes – computation of all possible genotypic variants containing the genes declared

within the program and the allele given within the function, returning the indicated field as the result.
pred generation – computation of all possible parent variants based on the traits inherited by

a generation.
estimate generation number – computation of the solution for a population problem, given

the trait inheritance probability within a generation and the total number of expected individuals
within it.

Grammar definition
The proposed DSL contains the following grammar and production rules, with the additional

notation legend explication offered in Tab. 1:
Table 1

Additional Grammar notations

notation explanation
<foo> nonterminal

notation explanation
foo terminal
[x] zero or one occurrence of x
𝑥∗ zero or more occurrence of x
𝑥ା one or more occurrence of x
| alternative

Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Chisinau, Republic of Moldova, March 29-31, 2022, Vol. I

- 303 -

G(L) = {𝑉, 𝑉௧, S, P}, where 𝑉 - neterminal symbols, 𝑉௧ – terminal symbols, S – Starting
symbol and P – finite set of production rules.

𝑉 = {<program>, <statements>, <declarations>, <assignments>, <flow structures>,
<computations>, <io>, <type>, <id>, <alphanum>, <alpha>, <bigalpha>, <smallalpha>, <digit>,
<char>, <field>, <expression>, <condition>, <operator>, <number>, <string>}

𝑉௧ = {; , “,”, “ ”, genes, parent, generation, boolean, string, number , +, -, =, ->, <, <=, >=,
==, !=, and, or, ?, :, if, then, else, while, do, end, a…z, A…Z, /, . , find, cross, pred, estimate, =,
print, all }

S = {<program>}

P = { <͢program> → < statements >ା

<statements> → <declarations> | <assignments> | <flow structures> | <computations> | <io>

<declarations> → <type> <id>[,<id>] ;

<type> → genes | parent | generation | boolean | string | number

<id> → <alpha>< digit >∗< alpha >∗

<alphanum> → <alpha> | <digit> | <char>

<char> → / | ? | . | ; |“ ”|

<alpha> → <bigalpha> | <smallalpha>

<smallalpha> → a|…|z

<bigalpha> → A|…|Z

<digit> → 0|…|9

<assignments> → set [<field>] <id> = <expression> ; | set [<field>] <id> = <computations> ;

 | set dom: <bigalpha> -> <smallalpha>;

<field> → label | dom | phenotype | codominance | loaction

<flow structures> → if <condition> then < statements >ା [else < statements >ା] end;

 | <condition> ? <statements> : <statements>;

 | while <condition> do < statements >ା end;

<condition> → <id> <operator> <id> | <id> <operator> <expression>

<expression> → <number> | <string> | true | false |

<number> → < digit >ା[. < digit >ା]

<string> → “< alphanum >ା”

<operator> → < | > | <= | >=| == | != | and | or

<computations> → find <field> <id>[;] | cross <id> x <id>[;] | pred < id >ା[;]

 | estimate <id> <number>[;]

<io> → print <id>; | print <field> [<id> | all <expression>];

}

Parsing tree
The image below (Fig.1) describes the parsing of the proposed DSL grammar to obtain a

workable program in the language.

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 29-31 Martie 2022, Vol. I

- 304 -

Figure 1 Parsing Tree

With a better resolution image available upon request or at [3].

Syntax example:
In Fig.2 is presented an example of a working program with its concept output. The example

described is the same as the one obtained through the Parsing Tree.

Figure 2 DSL program and output

Conclusions
The purpose of this article was to showcase the functionality, syntaxis and creation of a new

Domain Specific Language for solving problems associated with Punnett Square, a tool that would
help automatize the solution of those problems, while mitigating user attention error.

The proposed DSL is easy to use, with datatypes and syntactic sugar that resembles the natural
solution steps that interested parties, such as genetics consultants, students, and animal and plant
breeder, are already familiar with, while also implementing certain programming concepts, such as
loops and control structures, that would benefit more programming immersed individuals.

Because of lack of existence of alternatives, the described prototype is but a small solution to
a overarching problem that would also benefit from additional research and professional input.

References:
1. KOSAR, T., MARTI, P.E., BARRIENTOS, P.A. AND MERNIK, M.. A preliminary study on various

implementation approaches of domain-specific language. Information and software technology, 50(5),
2008, pp.390-405.

2. THOMSON, N. AND STEWART, J. Secondary school genetics instruction: making problem solving
explicit and meaningful. Journal of Biological Education, 19(1), 1985, pp.53-62.

3. GitHub repository of project: Parsing Tree: https://github.com/AlmightyCrickityCrick/punnett-
dsl/blob/main/syntax_tree.png

