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Decision support in order to assure an optimal business in the framework of an industrial company is 
based on some mathematical models, including optimization. The paper discusses the numerical 
solving of a task known as the Simple Assembly Line Balancing Problem (SALBP-I). In this context, 
a model based on the Second-Order Cone Programming (SOCP) it is proposed. 

The success at the level of an enterprise requires optimal organization of the production processes and 
related activities. These activities include organizational processes, economic and financial, 
production, trade, and, not least, information processes. What it is important in the organization of the 
business process it is the optimization of the enterprise activity, taking into account the market 
demands and current technology power. The activities listed are made by human agents and/or 
machines to help achieve business objectives across the enterprise. So, business process optimization 
is related to activities (or tasks), participants (human agents and/or machines) and targets (performance 
indicators). 
In general, the requirements for optimal organization of the enterprise activity are actual and fit into 
the idea of reengineering. This idea is centered on all processes in the modern enterprise. 
Reengineering is a radical redesign of a business process to achieve a considerable improvement in 
performance indicators (cost, quality, productivity, etc.). The idea of reengineering is actual one as 
information technology is constantly changing. Hence the ability to adapt quickly to market demands.  
Decision support for an optimal business in the framework of an industrial enterprise is not always 
possible without software products that are based on mathematical models of combinatorial 
optimization. It is the case of the simple assembly (manufacturing) line balancing problem (SALBP). 
The assembly line consists of a finite number of workstations that are running individual operations 
(tasks) to manufacture a single product. The problem now is to combine operations and workstations 
in order to obtain an optimal distribution of the workload to a minimum number of stations. At the 
same time, it is necessary to ensure conditions of precedence for the execution of operations.  
Assume the following conditions ([1]): 

the assembly line is designed for a single product and supports only one mode of functioning;  
the stations are serial arranged; 

75



 

 

AA  sseeccoonndd  oorrddeerr--ccoonnee  pprrooggrraammmmiinngg  ffoorrmmuullaattiioonn  ffoorr  ssiimmppllee  aasssseemmbbllyy  lliinnee  bbaallaanncciinngg  pprroobblleemm  

 

 

 

the execution time for operations is deterministic; 
the partition of operations is prohibited;  
all operations must be performed; 
there are precedence constraints;  
the execution time of an operation does not depend on the station on which is running; 
the cycle time is fixed.  

In the literature, several models of the SALBP-I problem have been presented ([2]). Most of them are 
formulated in terms of linear programming with binary variables and fit into the class of NP-hard 
problems ([3]). In this paper, we propose modeling the problem as a second-order cone programming 
(SOCP). 

It is assumed an assembly line of stations. At each station runs one operation by a person or an 
automatic device (robot), which is needed to manufacture a product. For product assembly all 
operations must be done in a strict order.  
We denote by  the immediate precedence matrix of dimension : 

,0
,,1

,  

It is consider to be known the production rate  (the number of items collected per unit time) and the 
processing time of the operation . The number of stations can not be lower than , where 

1

 is the time of all needed operations, and 1  is the total cycle time of the assembly line. 

It is required to perform the distribution of operations to workstations so that the number of jobs to be 
minimal, i.e., the maximizing of the number of "empty" jobs. An "empty" is a plant that does not 
perform any operation.  
We introduce Boolean variables  and : 

,0
,,1
 

,0
,,1
 

such that, 1 if the operation  is carried out at the workstation  and 0  when it is carried 
out at another station; 1  if one of the operations is performed at the station , and 0  in the 
opposite case. For the  problem different formulations have been proposed. We will consider 
the following mathematical model ([1]):  

min
1

         (1) 

subject to 

,,2,1,1
1

,        (2) 
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,,2,1,
1

,       (3) 

1,:,,,,2,1,
1

,      (4) 

,,2,1,1
1

,       (5) 

,,2,1,,1,0,1,0 .      (6) 

Restrictions (2) ensure that each operation will be performed only at a single workstation, and (3) - 
that the cycle must be greater than or equal to the length of time at all stations. Conditions (4) require 
the precedence relations between operations. If 0  (operation  is not running at the station ), 

then 
1

 may take any value of 0 or 1 and (4) becomes 0
1

, it is always true and not 

represent a constraint. If 1, then (4) is equivalent to (2). Restrictions (5) means the following: 

if 0 , then 
1

, which relationship is always satisfied. Thus (1) gives the number of "empty" 

jobs, i.e. the number of stations with 0
1

, stations that do not perform any operation. Conditions

(6) force  and  to be binary.  

Various heuristic and exact methods ([1]), ([4]), ([5]), ([6]) have been proposed to solve the zero-one 
linear program (1)-(6).  

The conditions (6) are equivalent to the non-convex quadratic constraints: 

,,0

,0
2

2

.        (7) 

It can be established that the constraints (7) are equivalent with: 

,10

,
1 1

2

,        (8) 

and 

,,10

,
1 1 11

2

.       (9) 

Applying the inequality: 
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2

1

,         

true for ,0 , from (8) we have: 

1

2

11

2 .        

Taking into account that the variables  are binary, from the last inequalities we obtain the second-
order cone of dimension 1  (Lorenz cone): 

1

2
1 ,: ,       

where 
1

şi ,,, 21 .  

In the same way, from (9) we obtain: 

1 1

2

1 11

2

1

.       

Thus (9) determines the second-order cone: 

1

2
2 ,: .      

Above we used the notation: 

1

,,2,1, , ,,, 21 , and 
1

.    

Thus, we can reformulate the problem (1) - (6) in terms of second-order cone programming: 

, 

subject to restrictions (2) - (5), and 

,0
1

2  

,0
1 1

2  

,0
1
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The paper contains a reformulation of the simple assembly line balancing problem in terms of second-
order cone programming. This problem can be effectively solved by the interior point algorithm ([7]). 
There is specialized software for solving conic optimization problems ([8]). 
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