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Abstract

In the present paper we describe the dynamics of the revised rigid

body, the dynamics of the rigid body with distributed delays and the

dynamics of the fractional rigid body. We analyze the stationary states

for given values of the rigid body’s parameters.
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1 Introduction

In mechanical problems, the dynamics of the rigid body has an important
role. In many papers M. Puta analyzed the dynamics of the rigid body with
control and he obtained important results.

Recently, the dynamics of revised rigid body, the dynamics of the rigid
body with distributed delay and the dynamics of the rigid body with frac-
tional derivative have been studied. The last two aspects represent the dy-
namics of the rigid body with memory.

Our paper studies the dynamics of the revised rigid body obtained by
a metriplectic structure which is canonically associated. We define the dy-
namics of the rigid body with distributed delays. For the Euler-Poincare
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dynamics of the rigid body we analyze the linearized system in an equilib-
rium point. We obtain the the existence conditions for the Hopf bifurcation
with respect to the parameter of the repartition density which defines the
distributed delay. Also, we define the fractional rigid body dynamics using
the Caputo fractional derivative.

2 The revised differential equations for the

rigid body

The differential equations for the rigid body in R
3 are described by a 2-

antisymmetric tensor field P and the Hamiltonian function h given by:

P (x) = (P ij(x)) =





0 x3 −x2

−x3 0 x1

x2 −x1 0



 , h =
1

2
(a1(x

1)2+a2(x
2)2+a3(x

3)2),

(1)
where (x1, x2, x3)T ∈ R

3, ai ∈ R+, i = 1, 2, 3, a1 > a2 > a3. These differential
equations are:

ẋ(t) = P (x(t))∇xh(x(t)), (2)

where ẋ(t) = (ẋ1(t), ẋ2(t), ẋ3(t))T and∇xh is the gradient of h with respect to
the canonical metric on R

3. The differential equations (2) have been studied
by M. Puta in [8].

Let R
3 be the space interpreted as the space of body angular velocities

Ω equipped with the cross product as the Lie bracket. On this space, we

consider the standard Lagrangian kinetic energy L(Ω) =
1

2
I · Ω, where I =

diag(I1, I2, I3) is the moment of inertial tensor, so that the general Euler-
Poincare equations become the standard rigid body equations for a freely
spinning rigid body:

IΩ̇ = (I · Ω)× Ω. (3)

If M = I · Ω is the angular momentum, then, (3) is:

Ṁ = M × Ω. (4)
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If M = (I1x(t), I2y(t), I3z(t))
T , Ω = (x(t), y(t), z(t))T from (4) results:

ẋ(t) =
I2 − I3

I1
y(t)z(t), ẏ(t) =

I3 − I1

I2
x(t)z(t), ż(t) =

I1 − I2

I3
x(t)z(t),

(5)
with I1 > I2 > I3. The differential equations (5) have been studied by M.
Puta in [9]. The revised differential equations for the rigid body given by
(2) have been studied in [5]. They are described by P, h and the tensor
fields g = (gij(x)), where P and h are given by (1) and g is defined by
g(x) = (gij(x)),

gij(x) =
∂h(x)

∂xi

∂h(x)

∂xj
, i 6= j, gij(x) = −

3
∑

k=1,k 6=i

(
∂h(x)

∂xk
)2, i = 1, 2, 3

and the Casimir function of structure Poisson P is:

c(x) =
1

2
((x1)2 + (x2)2 + (x3)3).

The structure (R3, P, g, h, c) is called a metriplectic manifold of second
kind. The revised differential system associated to (2) is given by:

ẋ(t) = P (x)∇xh(x) + g(x)∇xc(x). (6)

Proposition 2.1. (i) The differential equations (2) are given by:

ẋ1(t)=(a2−a3)x
2(t)x3(t), ẋ2(t)=(a3−a1)x

1(t)x3(t), ẋ3(t)=(a1−a2)x
1(t)x2(t);

(7)
(ii) The differential equations (6) are given by:

ẋ1(t)=(a2−a3)x
2(t)x3(t)+a2(a1−a2)x

1(t)(x2(t))2+a3(a1−a3)x
1(t)(x3(t))2

ẋ2(t)=(a3−a1)x
1(t)x3(t)+a3(a2−a3)x

2(t)(x3(t))2+a1(a2−a1)x
2(t)(x1(t))2

ẋ3(t)=(a1−a2)x
1(t)x2(t)+a1(a3−a1)x

3(t)(x1(t))2+a2(a3−a2)x
3(t)(x2(t))2;

(8)

The equilibrium points of the system (7) are studied in [8], and the equi-
librium points of the system (8), in [5].
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3 The differential system with distributed de-

lay for the rigid body

We consider the space R3, the product R3×R
3 = {(x̃, x), x̃ ∈ R

3, x ∈ R
3}

and the canonical projections πi : R
3 × R

3 → R
3, i = 1, 2. A vector field

X ∈ X(R3 × R
3) satisfying the condition X(π∗

1f) = 0, for any f ∈ C∞(R3)
is given by:

X(x̃, x) =

3
∑

i=1

Xi(x̃, x)
∂

∂xi

.

The differential system associated to X is given by:

ẋi(t) = X i(x̃(t), x(t)), i = 1, 2, 3.

A differential system with distributed delay is a differential system associates
to a vector field X ∈ X(R3×R

3) for which X(π∗
1f) = 0, for any f ∈ C∞(R3)

and it is given by (1), where x̃(t) is:

x̃(t) =

∫ k

0

k(s)x(t− s)ds,

where k(s) is a density of repartition. In what follows, we will consider the
case of the following densities of repartition:

(i) the uniform density with:

kτ (s) =











0, 0 ≤ s ≤ a
1

τ
, a ≤ s ≤ a + τ

0, s > a+ τ

,

where a > 0, τ > 0 are given numbers;
(ii) the exponential density, with kα(s) = αe−αs, α > 0;
(iii) the Erlang density, with kα(s) = α2se−αs, α > 0;
(iv) the Dirac density, with kτ (s) = δ(s− τ), τ > 0.
The initial condition is: x(s) = ϕ(s), s ∈ (−∞, 0],

with ϕ : (−∞, 0] → R
3 a smooth map. Some systems of differential equations

with distributed delay in R
3 were studied in [1], [2]. For such a system, we

consider relevant the geometric properties of the vector field which defines the
system, for example first integrals (constant of the motion), Morse functions,
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almost metriplectic structure, etc. The differential equations with distributed
delay for rigid body are generated by a 2-antisymmetric tensor field P on R

3×
R

3 that satisfies the following relations: P (π∗
1f1, π

∗
2f2) = 0, P (π∗

2f1, π
∗
2f2) = 0,

for all f1, f2 ∈ C∞(R3) and h ∈ C∞(R3 × R
3). The differential equation is

given by:
ẋ = P (x̃, x)∇xh(x̃, x). (9)

Let P (x̃, x) be the tensor field with the components given by:

(P ij(x, x)) =





0 x3 −x̃2

−x3 0 x1

x̃2 −x1 0



 (10)

and
h (x̃, x) = a1x̃

1x1 + a2x̃
2x2 + a3x̃

3x3. (11)

The differential equations (9) are:

ẋ1(t) = a2x̃
2(t)x3(t)− a3x̃

2(t)x̃3(t),

ẋ2(t) = a3x
1(t)x̃3(t)− a1x̃

1(t)x3(t),

ẋ3(t) = a1x̃
1(t)x̃2(t)− a2x

1(t)x̃2(t).

The differential system:

ẋ = P (x̃, x)∇xh(x̃, x) + g(x̃, x)∇xc(x̃, x), (12)

where the components of g(x̃, x) are:

gij(x) =
∂h(x, x̃)

∂xi

∂c(x, x̃)

∂xj
, i 6= j, gii(x) = −

3
∑

k=1,k 6=i

∂h(x, x̃)

∂xk

∂c(x, x̃)

∂xk
, i = 1, 2, 3

(13)
is called the revised differential system with distributed delay associated to
the differential system (9).

From (10), (11), (13) and c(x̃, x) = 1
2
(x1)2 + x2x̃2 + 1

2
(x3)2 results:

(gij)=







−a22x
2x̃2 − a3x

3x̃3 a1a2x̃
1x2 a1a3x̃

1x3

a1a2x̃
1x2 −a21x

1x̃1 − a3x
3x̃3 a2a3x̃

2x3

a1a3x̃
1x2 a2a3x̃

2x3 −a21x
1x̃1 − a22x

2x̃2






.
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The differential system (12) is given by:

ẋ1(t) = a2x̃
2(t)x3(t)− a3x̃

2(t)x̃3(t) + a1a2x̃
1(t)(x2(t))2,

ẋ2(t) = a3x
1(t)x̃3(t)− a1x̃

1(t)x3(t)− a21x
1(t)x̃1(t)x2(t)− a23x

2(t)x3(t)x̃3(t),
ẋ3(t) = a1x̃

1(t)x2(t)− a2x
1(t)x̃2(t) + a2a3x̃

2(t)x2x3.

(14)
For the Dirac distribution, system (14) was analyzed in [6]. The other

types of densities will be analyzed in our future papers.
The Euler-Poincare equation for the free rigid body with distributed delay

is defined by:
Ṁ = M × Ω+ αM × (M̃ × Ω̃)

whereM = (I1x(t), I2y(t), I3z(t))
T , Ω = (x(t), y(t), z(t))T , Ω̃ = (x̃(t), ỹ(t), z̃(t))T ,

M̃ = IΩ̃, I1 > 0, I2 > 0, I3 > 0 and α ∈ R.
The equilibrium points of our system are Ω1 = (m

I1
, 0, 0)T , Ω2 = (0, m

I2
, 0)T ,

Ω3 = (0, 0, m
I3
)T , m ∈ R

∗.

Proposition 3.1. The equilibrium point Ω1 has the following behavior:
(i) The corresponding linear system is given by:

U̇(t) = AU(t) + αBŨ(t)

where U(t) = (u1(t), u2(t), u3(t))T and

A =





0 0 0
0 0 I3−I1

I1I2
m

0 I1−I2
I1I3

m 0



 , B =





0 0 0
0 I2−I1

I1I2
m2 0

0 0 I3−I1
I1I3

m2



 ;

(ii) The characteristic equation is:

λ[λ2 −
αm2

I1
(
I2 − I1

I2
+

I3 − I1

I3
)λk(1)(λ) +

α2m4

I21I2I3
(I2 − I1)(I3 − I1)k

(1)(λ)2−

(I1 − I2)(I3 − I1)

I21I2I3
m2] = 0;

(iii) On the tangent space at Ω1 to the sphere of radius m2 the linear
operator given by the linearized vector field has the characteristic equation:

λ2 −
αm2

I1
(
I2 − I1

I2
+

I3 − I1

I3
)λk(1)(λ) +

α2m4

I21I2I3
(I2 − I1)(I3 − I1)k

(1)(λ)2−

(I1 − I2)(I3 − I1)

I21I2I3
m2] = 0;
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(iv) If I1 > I2, I1 > I3 and k(1)(λ) = e−τλ, τ > 0, for 0 ≤ τ < τc, where

τc =
I1(I3(I1 − I2) + I2(I1 − I3))

3|α|m2(I1 − I2)(I1 − I3)
,

then the equilibrium point Ω1 is asymptotically stable.

The analysis of the equilibrium point Ω1 for the Dirac density is given in
[1].

4 Fractional differential systems for the rigid

body.

Generally speaking, the fractional derivative, Riemann-Liouville frac-
tional derivative and Caputo’s fractional derivative are mostly used. In the
present paper we discuss the Caputo derivative:

Dα
t x(t) = Im−α(

d

dt
)mx(t), α > 0,

where m − 1 < α ≤ m, (
d

dt
)m =

d

dt
◦ ... ◦

d

dt
, Iβ is the βth order Riemann-

Liouville integral operator, which is expressed as follows:

Iβx(t) =
1

Γ(β)

∫ t

0

(t− s)β−1x(s)ds, β > 0.

In this paper, we suppose that α ∈ (0, 1).
Examples of the fractional differential systems are: the fractional order

of Chua’s system, the fractional order of Rossler’s system and the fractional
Duffing oscillator. The geometrical and mechanical interpretation of the
fractional derivative is given in [7]. The geometry of fractional osculator
bundle of higher order was made in [3] using the fractional differential forms
[4].

A fractional system of differential equations with distributed delay in R
3

is given by:
Dα

t x(t) = X(x(t), x̃(t)), α ∈ (0, 1), (15)

where x(t) = (x1(t), x2(t), x3(t))T ∈ R
3. The linearized of (15) in the equi-

librium point x0 , (X(x0, x0) = 0) is given by the following linear fractional
differential system:

Dα
t u(t) = Au(t) +Bũ(t), (16)
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where A = (∂X
∂x

)|x=x0
, B = (∂X

∂x̃
)|x=x0

.
The characteristic equation of (16) is:

∆(λ) = det(λαI −A− k(1)(λ)B), (17)

where k(1)(λ) =
∫∞

0
k(s)e−λsds.

From (16) we have:

Proposition 4.1. ([4]) (i) If all the roots of characteristic equation ∆(λ) = 0
have negative real parts, then the equilibrium point x0 of (15) is asymptotically
stable;

(ii) If k(s) is the Dirac distribution, the characteristic equation (17) is
given by:

∆(λ) = det(λαI − A− e−λτB) = 0.

If τ = 0, α ∈ (0, 1) and all the roots of the equation det(λI − A − B) = 0
satisfy |arg(λ)| > απ

2
, then the equilibrium point x0 is asymptotically stable;

(iii) If α ∈ (0.5, 1) and the equation det(λI−A−Be−λτ ) = 0 has no purely
imaginary roots for any τ > 0, then the equilibrium point x0 is asymptotically
stable.

For the following delayed fractional equation (see [4])

Dα
t x(t) = ax(t− τ) (18)

where α ∈ (0, 1), a ∈ R and τ > 0 the stability condition is:

If a < 0, (−a)
1

α 6= 1
τ
((2k + 1)π − α

2
π) and (−a)

1

α 6= − 1
τ
((2k + 1)π − α

2
π),

k ∈ Z, then the zero solution of (18) is asymptotically stable.
For the following delayed fractional equation (see [4])

Dα
t x(t) = y(t)− k1x(t)

Dα
t y(t) = −(k1 + k2)y(t) + x(t− τ),

(19)

where α ∈ (0, 1), k1 ≥ 0, k2 > 0, τ > 0, the stability condition is:
If k1 > 0, k2 >

1
k1

− k, then the zero solution of system (19) is asymptot-
ically stable.

For f ∈ C∞(R3), by Dα
x1f , Dα

x2f , Dα
x3f we denote the Caputo partial

derivatives defined by:

Dα
xif(x) =

1

Γ(1− α)

∫ xi

0

∂f(x1, ...xi−1, s, xi+1..., xn)

∂xi

1

(xi − s)α
ds, i = 1, 2, 3

(20)
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where (xi) are the coordinate functions on R, and ( ∂
∂xi ), i = 1, 2, 3 is the

canonical base of the vector field on R
n.

From (20) results:

Dα
xi(xi)γ =

(xi)γ−αΓ(1 + γ)

Γ(1 + γ − α)
, Dα

xi(xj) = 0, i 6= j.

Let X
α(R3) be the module of the fractional vector fields generated by

the operators {Dα
xi, i = 1, 2, 3} and the module D(R3) generated by 1-forms

{d(xi)α, i = 1, 2, 3}. The fractional exterior derivative dα : C∞(R3) → D(R3)
is defined by:

dα(f) = d(xi)αDα
xi(f).

Let
α

P ∈ X
α(R3) × X

α(R3) be a fractional 2-skew-symmetric tensor field
and dαf , dαg ∈ D(R3). The bilinear map [·, ·]α : C∞(R3) × C∞(R3) →
C∞(R3) defined by:

[f, g]α =
α

P (dαf, dαg), ∀f, g ∈ C∞(R3) (21)

is called the fractional Leibnitz bracket.
If

α

P =
α

P ijDα
xi ⊗Dα

xj then, from (21) it follows that:

[f, g]α =
α

P
ijDα

xifD
α
xjg.

From the properties of the fractional Caputo, results:

[fh, g]α =
∞
∑

k=0

(

α

k

)

α

P
ij(Dα−k

xi f)(Dα
xjg)

(

∂

∂xi

)k

h

[f, gh]α =
∞
∑

k=0

(

α

k

)

α

P
ij(Dα

xif)(Dα−k
xj g)

(

∂

∂xi

)k

h.

If
α

P is skew-symmetric we say that (R3, [·, ·]α) is a fractional almost Pois-
son manifold. If α → 1 then we obtain the concepts from [8].

For h ∈ C∞(R3), the fractional almost Poisson dynamic system is given
by:

Dα
t x

i(t) = [xi(t), h(t)]α,where[xi, h]α =
α

P
ijDα

xjh. (22)
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Let
α

P be a 2-skew-symmetric fractional tensor field and
α
g a 2-symmetric

fractional tensor field on R
3. We define the bracket [·, ·]α : C∞(R3) ×

C∞(R3) → C∞(R3) by:

[f, h]α =
α

P (dαf, dαg) +
α
g(dαf, dαh), f, h ∈ C∞(R3).

The structure (M,
α

P ,
α
g, [·, ·]) is called fractional almost metriplectic man-

ifold. The fractional dynamic system associated to h ∈ C∞(R3) is

Dα
t x

i(t) = [xi(t), h(t)]α,where[xi, h]α =
α

P
ijDα

xjh+
α
gijDα

xjh. (23)

If we define the bracket [·, (·, ·)]α : C∞(R3)×C∞(R3)×C∞(R3) → C∞(R3)
by:

[f, (h1, h2)]
α =

α

P (dαf, dαh1) +
α
g(dαf, dαh2), ∀f, h1, h2 ∈ C∞(R3),

then, the fractional vector field
α

Xh1h2
defined by:

α

Xh1h2
(f) = [f, (h1, h2)], ∀f ∈ C∞(R3)

is called the fractional almost Leibnitz vector field associated to the functions
h1, h2 ∈ C∞(R3).

The fractional almost Leibnitz dynamical system is given by:

Dα
t x

i(t) =
α

P
ijDα

xjh1 +
α
gijDα

xjh2.

Let
α

P = (P ij),
α
g = (gij) be the fractional 2-tensor fields on R

3 and
h ∈ C∞(R3) given by:

h1 =
1

Γ(α+ 1)
[a1(x

1)α+1 + a2(x
2)α+1 + a3(x

3)α+1].

Proposition 4.2. (i) The fractional dynamic system (22) is:

Dα
t x

1 = (a2 − a3)x
2x3, Dα

t x
2 = (a3 − a1)x

1x3, Dα
t x

3 = (a1 − a2)x
1x2; (24)

(ii) The fractional dynamic system (23) is:

Dα
t x

1 = (a2 − a3)x
2x3 + a2(a1 − a2)x

1(x2)2 + a3(a1 − a3)x
1(x3)2

Dα
t x

2 = (a3 − a1)x
1x3 + a3(a2 − a3)x

2(x3)2 + a1(a2 − a1)x
2(x1)2

Dα
t x

3 = (a1 − a2)x
1x2 + a1(a3 − a1)x

3(x1)2 + a2(a3 − a2)x
3(x2)2;

(25)
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(iii) The fractional dynamic systems (24) and (25) have the equilibrium
points M1(m, 0, 0), M2(0, m, 0), M3(0, 0, m), m ∈ R

∗;
(iv) The characteristic equations for (24) are:
in M1(m, 0, 0): λα(λ2α + (a1 − a3)(a1 − a2)m

2) = 0,
in M2(0, m, 0): λα(λ2α − (a1 − a2)(a2 − a3)m

2) = 0,
in M3(0, 0, m): λα(λ2α+(a1−a3)(a2−a3)m

2) = 0; (v) The characteristic
equations in M1(m, 0, 0), M2(0, m, 0), M3(0, 0, m) for (25) are:

λα(λ2α − a1(a2 + a3 − 2a1)m
2λα + (a1 − a3)(a1 − a2)m

2(a21m
2 + 1)) = 0,

λα(λ2α − a2(a1 + a3 − 2a2)m
2λα − (a1 − a2)(a2 − a3)m

2(a22m
2 + 1)) = 0,

λα(λ2α − a3(a1 + a2 − 2a3)m
2λα + (a1 − a3)(a2 − a3)m

2(a23m
2 + 1)) = 0;

The above findings allow the analysis of the equilibrium points with re-
spect to the parameters of the characteristic equations.

Equations (24) are called the fractional equations of the rigid body and
equations (25) are called revised fractional equations of the rigid body. If
α → 1, the results from Proposition 4.2 lead to results from [8].

For a1 := 3, a2 := 2, a3 := 1, α = 1 the dynamics (x1(t), x2(t), x3(t)) of
(24) is given in figure Fig.1 and for α = 0.82 in figure Fig.2. The numerical
algorithm used is Adam-Moulton-Bashford.
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5 Conclusions

In the present paper we present the dynamics of the rigid body with
memory. The memory was described by the variables with distributed delay
and by the Caputo fractional derivative.
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