
Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

254

DOMAIN SPECIFIC LANGUAGE FOR GENERATING FLOOR PLANS

Alexandru FURDUI1, Dmitri TRUBCA1, Iana SPIVAC1*,

Iulia VULPE1, Valentin DOGARI1

1 Technical University of Moldova, Faculty of Computers, Informatics and Microelectronics,

Department of Software Engineering and Automatics, FAF-192, Chișinău, Republic of Moldova

*Corresponding author: Iana Spivac, e-mail: spivac.iana@isa.utm.md

Abstract: This article describes a domain-specific language which is designed to transform textual

instructions for constructing 2D building plans into a visual representation. It is tried to keep the

grammar of this language as simple as possible, so that the average user doesn't get confused

among the many different and complex functions, allowing at the same time to create floor plans

in an easy way.

Keywords: Domain-specific language (DSL), Plan, Syntax, Grammar.

Introduction

The purpose of the given DSL is to create a friendly and functional environment for people

working in the field of construction planning. Although there are many programs dedicated to this,

such as AutoCad, none of them offer optimal use of resources and to use them, the programs need

to be installed on computers with quite powerful hardware. DSL will be compact and easy to use,

even the person who has no programming experience, after a short training will be able to use it.

Because this DSL does not require many hardware resources, that is why it will be cross-

platform unlike AutoCad [1] or 3DMax. To represent an apartment plan using this DSL, the

program must contain instructions for creating each room of which it consists, as well as some

other objects that it may contain.

To display any object, must be specified its position. The user will be able to choose

between absolute and relative coordinates. Due to the ability to place objects by entering their

relative location (for example, room Y to the right of wall1 of the room with the ID X), the process

of drawing the plan will be greatly simplified and accelerated. Each object would have properties

which have some predefined default values. For example, for a room it would be possible to set

the wall thickness (border), color, floor type. Also, it would be possible to indicate the position for

doors, windows or wall opening, so that the plan would be displayed accordingly. To represent the

data visually, after parsing, the output will be transformed into a Semantic Model – an object

representation of the Abstract Syntax Tree, and executed correspondingly.

The general basic features for the user are:

1. Selecting the number of the edges of the element;

2. Selecting the length,width and angle of the edge;

3. Rotating elements;

4. Selecting the color of the elements;

5. Setting the overlay property for elements;

Semantics and Semantics Rules

A program in the proposed language consists of variable declarations, expression

evaluations and struct data types specifications (each one for a different part of the floor plan). In

case of struct data types, only their properties must be specified, thus, their values shouldn’t be

assigned to a variable. Each different type of structure has their own list of mandatory properties,

whose presence will be explicitly checked by the interpreter at runtime. Each property must be of

the required type and within the given constraints.

mailto:spivac.iana@isa.utm.md

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

255

Besides the constraints implied by the grammar, we have specified a list of rules that

place additional constraints on the set of valid programs in this DSL:

1. No identifier is declared twice;

2. No identifier is used before it’s declared;

3. The value of id property for struct types has to be unique;

4. For structures that accept the properties size and angles, the length of the lists

specified by their values must be equally;

5. The value of the <id_parent> property, must be equal to the value of <id> property of

a Room structure declared beforehand.

For consistency purposes, the walls (inside the room struct data type) should be defined

in clockwise order.

Data types

Proposed DSL has primitive data types such as: int, float, color, measure. Non primitive

data types are: List, Room, Door, Window, Wall and secondary struct data types such as: Table,

Wall, Elevator, Bed.

Assignment

Assignment is only used for scalar values. Assignment statement sets and/or re-sets the

value stored in the storage location(s) denoted by a variable name, in proposed DSL a variable

will receive a value by using “=” , a property inside a structure receives a value by the using “:”.

Lexical consideration

In our language keywords are case sensitive. The reserved words [2] are: Room,

Window, Wall, Door, Elevator, Stairs, Bed, Table, Chair, Wardrobe, id, id_parent, size,

angles, border, position, wall, start_on_wall, end_on_wall, length, direction, start, end,

width, height, distance_wall, layer, visibility, hidden, visible, int, float, color, measure,

list, mm, cm, dm, m, km, in, ft, yd, mi.

Comments are started by // and are terminated by the end of the line. Multiple line

comments are started with /* and terminated with */

White space may appear between any lexical tokens. White space is defined as one or more

spaces, tabs, page and line-breaking characters, and comments.

Reference Grammar
Table 1

Meta-notation

Token Description

<foo> means foo is a nonterminal.

foo (inbold font) means that foo is a terminal; i.e., a token or a part of a token.

[x] means zero or one occurrence of x, i.e., x is optional; note that brackets in quotes ′ [′ ′]′are terminals.

x* means zero or more occurrences of x.

x + , a comma-separated list of one or more x’s.

{} large braces are used for grouping; note that braces in quotes ′{′ ′}′are terminals.

| separates alternatives.

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

256

S = {<source_code>}

VN={<statement>,<variable_name>,<variable_value>,<arithmetic_operation>,<variable

_declaration>,<elementar_structure_type>,<room_structure_declaration>,<room_structure_decl

aration>,<window_structure_declaration>,<door_structure_declaration>,<wall_structure_declar

ation>,<elementar_structure_declaration>,<structure_declaration>,<direction_type>,<visibility_

type>,<data_type>,<alpha>,<digit>,<number>,<alpha_num>,<float_literal,<color_hex>,<arith

metic_terms>,<measure_literal>}

V T = {:, (,), ;, , ,/*,*/,//,{,},#,+,-,/,’*’,=,Room, Window, Wall, Door, Elevator, Stairs, Bed,

Table, Chair, Wardrobe, id, id_parent, size, angles, border, position, wall, start_on_wall,

end_on_wall, length, direction, start, end, width, height, distance_wall, layer, visibility, hidden,

visible, int, float, color,measure, list,0.9,a.z,A.Z,mm, cm, dm, m, km, in, ft, yd, mi}

P = { <source_code> → <statement>*

<statement>→<variable_declaration>;|<elementar_structure_declaration>;|<room_struct

ure_declaration>;|<window_structure_declaration>;|<door_structure_declaration>;|<wall_struct

ure_declaration>;|<arithmetic_operation>;|<commentary>

<elementar_structure_type> → Elevator | Stairs | Bed | Table | Chair | Wardrobe

<room_structure_declaration> → Room(id: <id>, size: {<measure_literal> +, |

<variable_name>},angles:{<float>+,|<variable_name>},border:{‘{‘<measure_literal>,<color_

hex>’}’|<variable_name>},{position:{‘{‘<measure_literal>,<measure_literal>’}’|<variable_na

me>}| position: ‘{‘<measure_literal>,<measure_literal>,<measure_literal>,<measure_literal>’}’

| <variable_name>})}

<window_structure_declaration>→Window(id:{<id>|<variable_name>},id_parent:{<i

d>|<variable_name>},wall:{<number>|<variable_name>},{start_on_wall:{<measure_literal>|

<variable_name>}|end_on_wall:{<measure_literal>|<variable_name>}},length:{<measure_lite

ral>|<variable_name>})

<door_structure_declaration>→Door(id:{<id>|<variable_name>},id_parent:{<id>|<var

iable_name>},wall:{<number>|<variable_name>},{start_on_wall:{<measure_literal>|<variabl

e_name>}|end_on_wall:{<measure_literal>|<variable_name>}},length:{<measure_literal>|<va

riable_name>},direction:{<direction_type>|<var iable_name>})

<wall_structure_declaration>→Wall(start:{‘{’<measure_literal>,<measure_literal>’}’|<

variable_name>},end:{‘{‘<measure_literal>,<measure_literal>’}’|<variable_name>},border:{‘{

‘<measure_literal>, <color_hex>’}’ |<variable_name>})

<elementar_structure_declaration> →

<elementar_structure_type>(id:{<id>|<variable_name>},

layer:{<number>|<variable_name>}, visibility:{<visibility_type>|<variable_name>},

width:{<measure_literal>|<variable_name>},height:{<measure_literal>| <variable_name>},{

position:{’{‘<measure_literal>,<measure_literal>’}’|<variable_name>}|id_room:{<number>|<

variable_name>},wall:{<number>|<variable_name>},{start_on_wall:{<measure_literal>|<var

iable_name>} | end_on_wall: {<measure_literal>|<variable_name>}}, distance_wall:

{<measure_literal>|<variable_name>}})

<id> → <alpha><alpha_num>*

<commentary> → // <alpha_num>*

<variable_declaration> → <data_type> <variable_name>

=<variable_value>

<arithmetic_operation> → + | - | * | /

<arithmetic_operation>→<variable_name>=<arithmetic_terms>[<arithmetic_operation>

<arithmetic_terms>]

<arithmetic_terms> → <variable_name>|<number> +

<data_type> → int | float | list | color | measure <variable_name> →

<alpha><alpha_num>*

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

257

<variable_value>→<number>+|<alpha_num>+|<color_hex>|<float_literal>

+|<measure_literal>

<alpha> → a|.z|A|.Z

<digit> → 0|.|9

<number> → <digit> +

<float_literal> → <digit> + . <digit> +

<measure_literal> → {<float_literal> | <number>} <measure_unit>

<measure_unit> → mm | cm | dm | m | km | in | ft | yd | mi

<alpha_num> →<alpha>|<digit>

<list> → ’{‘{<list_item>{, <list_item>}*}*’}’

<list_item> → <color_hex> | <number> | <float_literal>

<color_hex> → #<alpha_num> +

<visibility_type> → hidden | visible

<direction_type> → in | out

}

Code example and syntax tree
Below is an example of how to declare a Room structure and its parse tree Fig. 1:

Room(id: 1a, size: {10m,10m,10m}, angles: {60.0,60.0,60.0},

border:{10cm,#000000},position: {10.0m, 10.0m});

Figure 1. Parse tree of declaration of Room structure

Conclusions
The syntax of the proposed language, allows for an easy, yet reliable way to draw floor

plans, without requiring any additional visual editor. All statements are intuitive, and can be

understood instantly by a domain expert. It provides a rich functionality that allows users to have

the best experience while designing the plan for their house. To test the grammar, we used ANTLR

[3] parser generator tool. As development progressed, a new lexical analyzer and parser was

implemented using a recursive descent approach and by writing a routine for each non-terminal in

the grammar. The parser is written in C++, a language that allows low level manipulations and

offers a fast processing speed. After the parse tree is created, the Semantic Model representing the

parsed data is populated and the graphics are displayed using OpenGL.

Reference:

1. AutoCAD.[online].[accessed 03.02.2021] Disponible:https://www.autodesk.com/products

/autocad/overview?term=1-YEAR&support=null

2. HARRISON, MICHAELl A. Introduction to Formal Language Theory. Boston:Addison-

Wesley, 1978.

3.The ANTLR [online].[accessed 20.02.2021] Disponible: https://tomassetti.me/ antlr-mega-

tutorial/

https://www.autodesk.com/products/autocad/overview?term=1-YEAR&support=null
https://www.autodesk.com/products/autocad/overview?term=1-YEAR&support=null
https://tomassetti.me/

