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1. INTRODUCTION
1.1. Antenna optimal synthesis after geometry

The antenna synthesis problem, generally
speaking, is a problem of finding such a spatial
distribution of electromagnetic field sources, that
generate the desired radiation pattern. It means the
determination of the geometry structure of a radiating
system, as well as the current distribution on this
structure.

The basic electrodynamic relation, connecting the
involved functions is the integral equation of the first
kind

Az = f, (1)
where z =z(x),x € G is the current distribution
in the region G, occupied by antenng;

f = f(w),weQ is antenna pattern as a function of

spherical angles{0, p}. The integral operator A is

determined by the antenna geometry G. Equation (1) is
just the equation that is traditionally used as the model of
antenna synthesis problem, being reduced to a standard
mathematically abstracted inverse problem for current
distribution along the fixed geometry and solved then by
Tihonov's regularization methods [1-3]. However, the
current distribution can't be an independently
variating function physically. As such functions can be
only antenna geometry and excitation function, i.e.
incident  electromagnetic  field or voltage of
o — functional generator. The equation (1) does not
contain the excitation function and thus, the based on it
model must be treated physically incomplete. The result
is that the practical realization of the obtained current
distribution remains to be a separate not at all simple
engineering problem. As to optimal antenna synthesis,
some formulations of quasi-optimal or optimal synthesis
were proposed [3], but all of them were obtained
within the framework of regularization method and are
like a many-parametric variation method, which is not
properly speaking an optimization method. Furthermore,
in view of mathematical difficulties, the deviation of

synthesized pattern f from the desired one f,is
considered in the least mean square sense (L, norm),
which is not only one of practical importance. The type

of closeness to desired function must be an engineering
decision since it will govern the performance of the
antenna being synthesized. From the practical
standpoint, more important is the closeness estimation

in sense of difference / f — f,/|for all directions

(L, , norm). As a deficiency of the based on equation

(1) approach also must be considered the unjustified
difficulties, arising via necessity to carry out the
regularization of mathematically instable inverse
problem

1.2. A new statement of antenna optimal
synthesis 1y geometry problem

As it was pointed above, the relation (1) is not
enough for optimal synthesis by geometry problem
formulation because it does not contains the mechanism
of antenna excitation that is why we first of all complete
it with integral equation of the type

Bz=g, )

It explicitly describes the relationship between
current distribution function z=2z(x),xeG and

excitation operator functiong =¢(x),xeG. The

integral operator B is determined by the physical part

of problem and the geometrical form. In case of thin wire
antennas (2) may be the well-known Hallen's or
Poclington's equation [4]. In general case it is an
integral relation between incident electromagnetic
field and induced current distribution.

The system of equations (1) - (2) is thus
physically complete, since describes both the excitation
and radiation processes, including geometry. Basing on it
we can correctly formulate different statements of antenna
optimal synthesis problem: optimal pattern synthesis by
geometry, optimal pattern synthesis by excitation,
combined statements.

Consider further the optimal synthesis by

geometry. Let p,(¢) be a set of continuous parametric
functions describing the geometric form - axial line for
thin wire structures, contour of revolution for rotational
symmetry shells. The problem is to find a set of p, (¢)
such that for a given excitation mechanism the

corresponding antenna pattern will possess desired
characteristics. To give it a standard form of optimal
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control problem the following system of differential
equations is introduced

dp,
iy (), a<t<p
dt 3)
pi(@)=p),i=12,..
This system plays part of state equations
dynamical controi system respect to functions

p;(t), as the state or phase variables. Totality of
quantities {u, (¢), p’}is declared as control, since it

uniquely determines the functions p,(¢), i.e. the

geometrical form of radiating system. Knowing
p,(t), one can derived all the electrodynamtc

characteristics, using equations (1) - (2) in direct
calculations. From the optimal control theory point
of view, the operator equations (I) - (2) play role of
the bond equations. Note that they are integral
equations, but no inverse problem arises here. The
optimal synthesis problem is formulated thus under
the scheme: on the multitude of system (3) solutions

to find the extremum of functional F; under
conditions F, <0, or

{FO [u,(2), p)1— extremum; @

Flu,(£), p)1<0,k=12,...

As a quality functional F; any expressions

derived from synthesized and desired pattern can be
chosen. The restrictions £, <0 also can be of any

kind concerning the pattern, as we D as the current
distribution or geometricaL dimensions. Concrete

expressions of Fy, F; bond equations (1)-(2) and

state equations (3) allow us to express the variations
of these functionalize on geometrical form by the

variations on control {u,(¢), p}. Thus, different

concrete problems can be resolved in strict
accordance with engineering desires: minimization
of sideiobes and main beam area by arbitrary
geometrical restrictions, beam-peak maximization
by any restrictions on pattern and s.a.

The formulated problem of optimal control
can be easy reduced to a straight non-linear probliem
of mathematical programming in functional space
and numerically solved using the consecutive
linearization method [5]. this approach both
closeness estimation between synthesised and

desired pattern can be admitted: in L,norm and in
L_norm.

2. OPTIMAL SYNTHESYS OF ROTATIONAL
SYMMETRY SHELLS

2.1. Problem formulation

Consider for certainty the rotational symmetry
problem of excitation of a conducting shell magnetic
dipole irradiator as shown Figure 1. The non-zero
field components in this case of E - polarization

areE,, H,,H_ . The shell is described by rotated
contour [ in vector-parametrical form

F(t)=i,p(0)+i.6(0),a <1< f, (4)
The pattern of such radiating system is
fl@)= @)+ (0), we{d0} ()

where ) (w) is the known pattern of irradiator,

(@) the pattern of induced on shell current
distribution j(t)

'B .
(@)= ICD[p(t), §(0), p(1),5(1), 0]j()dr. (6)

Here ®[...] is a known complex function and 7 (¢) is the
solution of integral equation [6]:

B
j K(t,7)j()dt=p(r),a<t< B (7)

K(t2)=ip@)sn P 0+ [~

L={p*())+p"(0)-pl0)p(D) cosp+[£(r) - EDTF?, ©)

cosedp, (8)

where k=27/A is the wave number, A- wave
length. The excitation function @(z) for magnetic
dipole (round current frame) is

o(7) = 'I;}g) (k —RLOje_"kR", (10)
Ry ={p’(t)+[£(r)-HT¥"?, (1)

where H is the coordinate z value of dipole. The
function s(z) in (8) is determined by the edge
condition for E - polarization [6]

1
s(t) = . 12
RN e M

From expressions (5)-(11) it is seen that
adjusting the contour 77, i.e. variating the functions
(1), &(¢t) provides the variation of the pattern f'(®) .

Naturally arises the possibility of choosing such a
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contour ", that f(w) would be optimal in some

sense.

Let us discuss the kind of conditions and restrictions
that may occur in problem of optimal synthesis by
geometry from engineering standpoint. First group of
restrictions is concerned to geometric structure. For
example, the inequalities

max/ p(1)[ <K ,,max/ £(1) [ < K., (13)
max/ p(r)/ < K, max/ E(1)/ < K, (14)
t t
restrict the spatial position and the curvature of the
contour I correspondingly. Coefficients K L, K,

K, K ; are the given quantities. It assumed that

p(1),£(t) have continuous derivate not turning into
zero
{p-a) <p(<p (1) 5)
F(N<s)=<s@)a<t<p
keep the contour 1" in some space corridor limited by

curves{p"(¢), & (t)}and {po" (1), &" (1)}
The end points «, # of contour /" can be fixed

or not fixed. For the free end point the restrictions
on its possible position should be specified

{p-(a) <pla)<p’(a),
(@) <é(a)<é(a).

At last, to avoid electrical contact between the
conducting shell and the irradiator the minimum

distance (11) between them must be required to be more
then or equal to a given quantity Ky >0

(16)

minR,(t) 2 K, ,a <t < p. 7)

The second group of restrictions is related to antenna
pattern form. They can be of a large diversity and be
applied to a part ofpattern coinciding with main

beam area €2, or with sidelobes area €2 as well as

to the total pattern. The more natural for practice are
the restriction

max/ f(w)! < K, o € Qq,
max/ f(w)! >K,,,weQ,,,

(18)
(19)

where K, , K,, are the given quantities. Last
restriction can be substituted for more rigorous one

max// f(@) /- f,(@)] <K, 0cQ,,,

where f,(@w) is the needing function. The
restrictions can be also applied to different functions

(20)

on pattern such as directivity or antenna gain.

As quality functionals which must be
minimized we can choose one from foHowing
expressions

Fyo= (1 (@) do, (21)

Fy= [Ilf(@)~ fol@) [ do, (@2)
Fy =max | (@) |- /(@)

e,

(23)

The physical sense ofthem is obvious.

Finally formulate a possible statement of
pattern optimal synthesis for geometry. On the
totality of solutions of the differential equations
system

dp _ as _
O D
pla)=p°, |&(a)=¢°,

with p(¢),£(¢) being the components of vector-

parametrical form of contour 77, to minimize the
functional

Fyluv, 0. €= [I f(@.u,,p°.&") [ do, (25)

Qg

under the conditions:

Fluv,p,.&1=K, ~max f(ouv,0°,.5) <0, (26)

Euy,p°,&1= p(B)-p' =0, 27)
Eluv,p°,&1=4B)-¢ =0, (28)
F[uv,p",£]=maxp(1)-K, <0, (29)
Flu,v,p", &1 =—maxp(r) <O, (30)
Fyfu,v,p°,&°1=max &)X, <0, (31)
Fu,,p",&=—minR,(1) +K, <0 (32)

if{u,v, p°,E% € A, where Ais determined by the
conditions

{| u() <K, {| WK,

33
P15 K o0 |1 €K, <

The so formulated optimal synthesis problem in form
of optimal control problem can be reduced to a non-linear
problem of mathematical programming in functional
space. For numerical solution the sequential
linearization method [7] is used.
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2.2. Calculation of functionals variations

The explicit form of functionals F, allows

1

relatively easy to deduce the expressions for oF; in form
of a linear functional on all components of variation of
trajectory  {ou, &, 0p°,6E°, p, OE, 8, ¥ }. These
expressions must be transformed by substitution the terms
with 8p, &, g, of for others equal them and containing
only the variations of control {du, &v, 5p°, 5°} This
is possible since the variations Jp,o&,d,df are
completely  determined  through{diz, &, 5p°, 5E° by
virtue of:
o "Equations in variations"

d%p _ 4o _
dt = oult) dt &(t)’aStSﬂ,

Sp(a)=p°, |6E(a) =68,

(34)

B B
(@)= [, )F (@)t +] D, (1, ) j(0)pAe)dt+
B B
+ j D (1,0) j()S&K1)dt+ j @, (1, ) j() )i+  (35)

+.ﬁ[CDv (t, ) j(©)O(t)dt

o "Lagrangian identity"

oo @0,y 45, AT, ¥, _
{ {(‘*?E”(‘P%E)*(E&’”(E&’)}“‘

(36)
s s
=(,00 |+(T.69) |,

o "Integral equation in variations"

B

[{K (090 +0,(t, 7)) + 0, (6, )50 it +
+Qy(0)3p(r) + 0, (1) 0K(z) +

B

[104(t,2)8u(z) + 0y (7)) e -

o

37)

=P (7)op—P.(1)0s=0,a <7<,

which is obtained by variation (7) under procedure
analogous that described in [8]. Here @ belongs the

range of definition for (@) and
Qi!i = 11213141516,PP,P§ are
Ql(t' T)= Kp, (¢,7)j(1),

O,(t,7)= K.»;, (¢,7) (1),
B
0,(7) = [ K, (t.7) (),

B
0,(7) = [ K. (17) j(1)d,

Os(t,7) =K, (1,7) j (1), (38)
Os(t,7) = K, (1,7) j (1),
£(0)=9, (),
P(7) = 9. (7).
where the indices p,,p,,¢&,,&, mean partial

derivates with respect to corresponding function in
kernel K (z,7) orinright part of ¢, (7).

The technique of calculation the functional
derivates is more convenient to demonstrate for the
functional (25) as an example. In this case the
calculations embrace all typical chain elements of
dependences and are realized in following order:

» Having{u, v, p°, £} calculate p(7), £(¢)
from (24);

> Solving (7) than determine j(¢);

> Further calculate f'(@) using (5) and;

» Finally functional F[u,v, p°,£°] using (25).

The calculations of functional variations are

realized in invers order:
1. First, the straight variation of (25) gives

Fluv,p,E1= {A@F @+ (@F (@Yo (39)

Obviously, if is enough in the following to express
through i, &v, 5p°, 6&° only the first term in (39),
since the second one is obtained by analogy with it.

2. Variating (5), we obtain the equation in
variations (Jf (w) =0)

B B
(@)= j (1, ) (0)dt + j D (¢, @) j(O)Ip()dt +
B B
+[@,(t,0) ()5 dt-+[ @, (1,0) j(¢)u(t)dt+ (40)

B
+ j D (1, ) j(1)5(1)dt

We are interesting though in
on f(w)df (w). 1tis obviously that

integral
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B B
[ F(@F (@do=[DO)F@)dt+[ D, ()op()dt+
Qg a a (41)
B B B
+ j D, (1)5&¢)dr+ j D (H)dur)dt+ j D (ND)dt,

where

D(1) = j F(@)®(t, ) j(t)dw, andso.

B
3. The following step is to transform J.(I)(t)bj' (t)dt into
integral onop, 6&, du,ov. It is achieved by using the
"integral equation in variations" (37). Multiplying (37)

by a function P(z), which will be defined bellow,

integrating on ¢, changing the order of integration,
denoting ¢ through 7 and vice versa, we obtain the
expression

B B

j R, (7)3i(r)dr + j R, (r)dp(r)d7 +

; y

IR5(1)5§(r)dr + IRu(T)5u(T)dT + @

+ TRV(T)Ev(r)dr =0,

which we name the "Lagrangian identity" for integral
equation in variations (37). Here

B
Ry(7)=[ K (. )P(0)dt, K" (t,7) =K (z,2),

5
R,(7) =J.Q1(t1 D)P(0)di+0,(1)P(7)— B, (1) (7)),
. (43)

5
R.(7)= J.Qz (0. )P(0)d1+Q, (r)Pz) - F.(1) (2),

B B
R (2)=[Q(t. )Pt R, (2) = [ Oyt D)P(e)e.

Now concretize the choice of P(¢) talking it as a solution
of integral equation

B
j K (t,0)P(t)dt=D(z),a <7< B. (44
Then (42) obviously gives the expression of integral on

0j(¢) to be found, through the integrals on Jdp, o6& and
ou, ov

R

B
D(1)(t)dt = — j R (7)3p(r)d T~
B ) B
- j R.(2)8&(r)dr - j R, (2)ou(r)dr—  (45)
; a
- j R (7)ov(7)dr.

B
Making the substitution ofjd)(t)éj(t)dtfor that

from (41) we obtain

B
If(co)&f(a))da) :J}%p (r)op(r)dr +
5 ;o
[R.(Dse@)dr+ [ R (D)éu(r)dr+  (@6)

+ fﬁv(r)&z(r)dr,

where
R, (7)=® (z)-R(z), andso.

In the same way for I f (@) (w)dw we obtain

Qs

s
If(w)éf(a))da) = Iﬁ; (r)dp(r)dr +

/?SA ﬁa ~

[R (0)8&(x)dr + [ R (t)ou(r)dz+  (@7)

+ fﬁ* (v)ov(r)dr,

Here R’ (r) = R’ () and so. From (46), (47) and (39)
we have

B
SF[Su, v, 5p°, 56°] = j R(z)Sp(r)dr +

B B
+ [E()o(e)dr +[U(D)du(z)dr+ (@)
B
+ j V(r)ov(r)dr,
where )
R(z)=2ReR (r),E(r) =2ReR.(7),
U(r)=2ReR (7),V(r)=2ReR (r), (49)
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4. The final step of transformations consists in
expressing integrals with op, o0& through integrals on

ou, v, 6p°,6E° .

Using the equation in  variations (34),
Lagrangian identity (36) and specifying functions
W, (¢), ¥:(¢) asthe solutions of the systems

d¥ d¥
c;t(t) =R, jt(t) ==, (50)
¥, (a)=0, Y. () =0,

on the interval o <¢ < [ obtain the final expression
for OF

B
SF[Su, v, 5p°, 56°] = j W, (r)ou(z)dr +
, " (52)
[w,(@)ov(x)dz +adp® + b5,

where
w,(0)="Y,0)+U(@), [W,(0)=".()+V (1),
a="¥,(a) b=Y.(a)

Alll calculations are making of course on a not "perturbed

trajectory” {u, v, p°, &%, j, f }.

The derivatives evaluation for other functional
being by Freshe differentiable are making by the some
scheme.

As to functionals being only by Gato
differentiable (by directions in functional space) the
approximation described in [5,8] is used. The main
elements of this approximation are directional
derivatives of functionals like

Flu,v,p°, 81 f(@)],

where @ is a point in range of definition of f(@").

The evaluation of derivatives for such functional differs
from above described scheme only in that the equation
(44) must be solved with the right part of the form

f(@)
| f ()]

The solvability of formulated problem of
mathematical programming in functional space is
proofing by references to theorems of extremum theory.
That is about existence. As to unigqueness, in similar
problems it is not essential: even if the solution is not
unique, we satisfy with any optimal one.

(53)

A(f) > F(t,0"),

(54)

3. NUMERICAL RESULTS

The formulated problem was numerically solved
using the programme, described in detail in [7]. Its
adaptation is connected with discrete approximation of the
continuous problem. As a result a set of FORTRAN
programmes was elaborated which allows to synthesize the
radiating surfaces of revolution by any conditions on
geometry form and on antenna pattern.

Figure 1, a shows the geometry. As a primary
radiator a magnetic dipole is chosen, but it is not a serious
restriction since any excitation with axial symmetry can be
used. The function ¢@(z)in right part of (7) will be

changed only. Figure 1,b — pattern, Figure 1,c -
geometry.

In Figure 2 are represented the results of
synthesis a surface having the pattern of a disk. So, the
main  bim is demanded to be in range

Q,, =[20°,80°].The end points of contour I" are
{p(a),&(a)}=(0,0);

fixed at
{0(£).£(B)}=(1,0).
So as the control is the set {u(¢),v(z)}. Initial
control  {u°(£),v°(¢)}satisfies (30) and initial
geometric form is a cone with cone angle 45°. The
synthesized surface is very close to that of a disk and
synthesized pattern is also close to a disk pattern.
The result was achieved on 11-s iteration of the
sequential linearization method.
As the second example (Figure 3) was chosen the
problem (23)-(33) with fixed end points of contour 7.
The purpose was to synthesize the surface with pattern in

region Q,, =[150°,170°] Initial control
{u°(),v° ()} satisfies (30). In Figure 3a and
Figure 3b are represented the pattern and the
corresponding contours [ after 1-t, 6-s and 12-s
iteration. The synthesized pattern satisfies the
conditions and the synthesized surface has a smooth
character so that easy can be reproduced technically.
In Figure 4 are represented the results of contour
synthesis with free end point | p(«), &(«)}. The control

in this case is {u° (¢),v°(¢), p°, £} The desired pattern
must be in regionQ,, =[4°,24°] The initial control

satisfies (33). In Figure 4a and Figure 4b are
represented the patterns and contours after 1-t, 10-s
and 12-s iteration correspondingly. The obtained
surface as in previous case is smooth enough. The
represented  results  demonstrate the  wide
possibilities of the proposed here technique for
solving the antenna pattern optimal synthesis for
geometry problem.
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Figure 1. Initial surface area has been used the

surface area of the cone: a — magnetic dipole; b —
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geometry.
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