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1. INTRODUCTION 

 
1.1.  Antenna optimal synthesis after geometry  

 
The antenna synthesis problem, generally 

speaking, is a problem of finding such a spatial 
distribution of electromagnetic field sources, that 
generate the desired radiation pattern. It means the 
determination of the geometry structure of a radiating 
system, as well as the current distribution on this 
structure. 

The basic electrodynamic relation, connecting the 
involved functions is the integral equation of the first 
kind   

 
,fzA =
                 

(1) 
 

where Gxxzz ∈= ),(   is   the   current   distribution   
in   the   region   G,   occupied   by   antenna; 

Ω∈= ωω),(ff  is antenna pattern as a function of 
spherical angles },{ ϕθ . The integral operator A  is 
determined by the antenna geometry G. Equation (1) is 
just the equation that is traditionally used as the model of 
antenna synthesis problem, being reduced to a standard 
mathematically abstracted inverse problem for current 
distribution along the fixed geometry and solved then by 
Tihonov's regularization methods [1-3]. However, the 
current distribution can't be an independently 
variating function physically. As such functions can be 
only antenna geometry and excitation function, i.e. 
incident electromagnetic field or voltage of 
−δ functional generator. The equation (1) does not 

contain the excitation function and thus, the based on it 
model must be treated physically incomplete. The result 
is that the practical realization of the obtained current 
distribution remains to be a separate not at all simple 
engineering problem. As to optimal antenna synthesis, 
some formulations of quasi-optimal or optimal synthesis 
were proposed [3], but all of them were obtained 
within the framework of regularization method and are 
like a many-parametric variation method, which is not 
properly speaking an optimization method. Furthermore, 
in view of mathematical difficulties, the deviation of 
synthesized pattern f  from the desired one 0f is 
considered in the least mean square sense ( 2L norm), 
which is not only one of practical importance. The type 

of closeness to desired function must be an engineering 
decision since it will govern the performance of the 
antenna being synthesized. From the practical 
standpoint, more important is the closeness estimation 
in sense of difference // 0ff − |for all directions 
( ∞L , norm). As a deficiency of the based on equation 
(1) approach also must be considered the unjustified 
difficulties, arising via necessity to carry out the 
regularization of mathematically instable inverse 
problem 

 
1.2.   A new statement of antenna optimal 
synthesis 1y geometry problem  

 
As it was pointed above, the relation (1) is not 

enough for optimal synthesis by geometry problem 
formulation because it does not contains the mechanism 
of antenna excitation that is why we first of all complete 
it with integral equation of the type 

 

,ϕ=zB
                               

(2) 
 

It explicitly describes the relationship between 
current distribution function Gxxzz ∈= ),(  and 
excitation operator function Gxx ∈= ),(ϕϕ . The 
integral operator B  is determined by the physical part 
of problem and the geometrical form. In case of thin wire 
antennas (2) may be the well-known Hallen's or 
Poclington's equation [4]. In general case it is an 
integral relation between incident electromagnetic 
field and induced current distribution. 

 The system of equations (1) - (2) is thus 
physically complete, since describes both the excitation 
and radiation processes, including geometry. Basing on it 
we can correctly formulate different statements of antenna 
optimal synthesis problem: optimal pattern synthesis by 
geometry, optimal pattern synthesis by excitation, 
combined statements. 

 Consider further the optimal synthesis by 
geometry. Let )(tiρ  be a set of continuous parametric 
functions describing the geometric form - axial line for 
thin wire structures, contour of revolution for rotational 
symmetry shells. The problem is to find a set of )(tiρ  
such that for a given excitation mechanism the 
corresponding antenna pattern will possess desired 
characteristics. To give it a standard form of optimal 
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control problem the following system of differential 
equations is introduced 
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This system plays part of state equations 
dynamical controi system respect to functions 

)(tiρ , as the state or phase variables. Totality of 

quantities }),({ 0
ii tu ρ is declared as control, since it 

uniquely determines the functions )(tiρ , i.e. the 
geometrical form of radiating system. Knowing 

)(tiρ , one can derived all the electrodynamtc 
characteristics, using equations (1) - (2) in direct 
calculations. From the optimal control theory point 
of view, the operator equations (l) - (2) play role of 
the bond equations. Note that they are integral 
equations, but no inverse problem arises here. The 
optimal synthesis problem is formulated thus under 
the scheme: on the multitude of system (3) solutions 
to find the extremum of functional 0F  under 
conditions 0≤kF , or 
 

⎪⎩

⎪
⎨
⎧

=≤

→

,...2,1,0]),([

;]),([
0

0
0

ktuF

extremumtuF

iik

ii

ρ

ρ
       (4) 

 

As a quality functional 0F  any expressions 
derived from synthesized and desired pattern can be 
chosen. The restrictions 0≤kF  also can be of any 
kind concerning the pattern, as we D as the current 
distribution or geometricaL dimensions. Concrete 
expressions of 0F , kF bond equations (1)-(2) and 
state equations (3) allow us to express the variations 
of these functionalize on geometrical form by the 
variations on control }),({ 0

ii tu ρ . Thus, different 
concrete problems can be resolved in strict 
accordance with engineering desires: minimization 
of sideiobes and main beam area by arbitrary 
geometrical restrictions, beam-peak maximization 
by any restrictions on pattern and s.a.  

 The formulated problem of optimal control 
can be easy reduced to a straight non-linear probliem 
of mathematical programming in functional space 
and numerically solved using the consecutive 
linearization method [5]. this approach both 
closeness estimation between synthesised and 
desired pattern can be admitted: in 2L norm and in 

∞L norm.  
 

2. OPTIMAL SYNTHESYS OF ROTATIONAL 
SYMMETRY SHELLS 

 
2.1. Problem formulation 

 
Consider for certainty the rotational symmetry 

problem of excitation of a conducting shell magnetic 
dipole irradiator as shown Figure 1. The non-zero 
field components in this case of E - polarization 
are ϕE , rH , zH . The shell is described by rotated 
contour Г  in vector-parametrical form   

.),()()( βαξρρ ≤≤+= ttititr z            (4) 
 

The pattern of such radiating system is  
 

},{),()()( )()( ϕϑωωωω ∈+= si fff        (5) 
 

where )()( ωif  is the known pattern of irradiator, 
)()( ωsf  the pattern of induced on shell current 

distribution )(tj  

.)(]),(),(),(),([)()( dttjttttf s ∫Φ=
β
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(6) 

Here [...]Φ  is a known complex function and )(tj is the 
solution of integral equation [6]: 
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where λπ /2=k  is the wave number, λ - wave 
length. The excitation function )(ˆ τϕ  for magnetic 
dipole (round current frame) is 
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where H  is the coordinate z   value of dipole. The 
function )(ts  in (8) is determined by the edge 
condition for E - polarization [6] 
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From expressions (5)-(11) it is seen that 
adjusting the contour Г , i.e. variating the functions 

)(),( tt ξρ  provides the variation of the pattern )(ωf . 
Naturally arises the possibility of choosing such a 
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contour Г , that )(ωf  would be optimal in some 
sense. 

Let us discuss the kind of conditions and restrictions 
that may occur in problem of optimal synthesis by 
geometry from engineering standpoint. First group of 
restrictions is concerned to geometric structure. For 
example, the inequalities 
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tt
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restrict the spatial position and the curvature of the 
contour Г  correspondingly. Coefficients ρK , ξK , 

ρK , ξK  are the given quantities.  It assumed that 

)(),( tt ξρ  have continuous derivate not turning into 
zero 
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keep the contour Г  in some space corridor limited by 
curves )}(),({ tt −− ξρ and  )}.(),({ tt ++ ξρ   

The end points βα ,  of contour Г  can be fixed 
or not fixed. For the free end point

 
the restrictions 

on its possible position should be specified 
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At last, to avoid electrical contact between the 
conducting shell and the irradiator the minimum 
distance (11) between them must be required to be more 
then or equal to a given quantity KH > 0 

 

.,)(min 0 βα ≤≤≥ tKtR Ht
           (17) 

 

The second group of restrictions is related to antenna 
pattern form. They can be of a large diversity and be 
applied to a part ofpattern coinciding with main 
beam area MΩ or with sidelobes area SΩ  as well as 
to the total pattern. The more natural for practice are 
the restriction 
 

,,/)(max/ SSKf Ω∈< ωω
               

(18) 
,,/)(max/ MMKf Ω∈> ωω                (19) 

 

where SK  , MK  are the given quantities. Last 
restriction can be substituted for more rigorous one 
 

,,/)(/)(max// 00 MKff Ω∈<− ωωω      (20) 
 

where )(0 ωf  is the needing function. The 
restrictions can be also applied to different functions  

on pattern such as directivity or antenna gain.  
 As quality functionals which must be 
minimized we can choose one from foHowing 
expressions 
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The physical sense ofthem is obvious.  
Finally formulate a possible statement of 

pattern optimal synthesis for geometry. On the 
totality of solutions of the differential equations 
system 
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with )(),( tt ξρ  being the components of vector-
parametrical form of contour Г , to minimize the 
functional 
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under the conditions: 
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if ,},,,{ 00 Δ∈ξρvu whereΔ is determined by the 
conditions 
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The so formulated optimal synthesis problem in form 
of optimal control problem can be reduced to a non-linear 
problem of mathematical programming in functional 
space. For numerical solution the sequential 
linearization method [7] is used. 
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2.2. Calculation of functionals variations 
 

The explicit form of functionals iF  allows 
relatively easy to deduce the expressions for iFδ in form 
of a linear functional on all components of variation of 
trajectory }.,,,,,,,{ 00 fjvu δδδξδρδξδρδδ These 
expressions must be transformed by substitution the terms 
with fj δδδξδρ ,,, for others equal them and containing 
only the variations of control },,,{ 00 δξδρδδ vu  This 
is possible since the variations fj δδδξδρ ,,,  are 
completely determined through },,,{ 00 δξδρδδ vu by 
virtue of: 

• "Equations in variations" 
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• "Lagrangian identity" 
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• "Integral equation in variations" 
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which is obtained by variation (7) under procedure 
analogous that described in [8]. Here ω  belongs the 
range of definition for )(ωf  and  
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where the indices ττ ξξρρ ,,, tt  mean partial 
derivates with respect to corresponding function in 
kernel ),( τtK  or in right part of ).(τϕ

τρ
 

 The technique of calculation the functional 
derivates is more convenient to demonstrate for the 
functional (25) as an example. In this case the 
calculations embrace all typical chain elements of 
dependences and are realized in following order: 

 Having },,,{ 00 ξρvu calculate )(),( tt ξρ  
from (24); 

 Solving (7) than determine )(tj ; 
 Further calculate )(ωf  using (5) and; 
 Finally functional ],,,[ 00 ξρvuF using (25). 

The calculations of functional variations are 
realized in invers order: 
1. First, the straight variation of (25) gives 
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Obviously, if is enough in the following to express 
through 00 ,,, δξδρδδ vu  only the first term in (39), 
since the second one is obtained by analogy with it. 

2. Variating (5), we obtain the equation in 
variations )0)(( =ωδf   
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We are interesting though in integral 
on )()( ωδω ff . It is obviously that 
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where 
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3. The following step is to transform dttjt )()(ˆ δ
β

α
∫Φ  into 

integral on vu δδδξδρ ,,, . It is achieved by using the 
"integral equation in variations" (37). Multiplying (37) 
by a function )(tP , which will be defined bellow, 
integrating on t, changing the order of integration, 
denoting t through and vice versa, we obtain the 
expression 
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which we name the "Lagrangian identity" for integral 
equation in variations (37). Here 
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Now concretize the choice of )(tP talking it as a solution 
of integral equation 
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Then (42) obviously gives the expression of integral on 
)(tjδ to be found, through the integrals on δξδρ , and 
vu δδ ,  
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Making the substitution of dttjt )()(ˆ δ
β

α
∫Φ for that 

from (41) we obtain 
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where 
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Here )(ˆ)(ˆ ** ττ ρρ RR = and s.o. From (46), (47) and (39) 
we have 
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4. The final step of transformations consists in 
expressing integrals with δξδρ ,  through integrals on  

00 ,,, δξδρδδ vu . 
Using the  equation  in  variations  (34),  

Lagrangian  identity  (36)   and  specifying  functions 
)(),( tt ξρ ΨΨ  as the solutions of the systems 
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on the interval βα ≤≤ t  obtain the final expression 
for Fδ  
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All calculations are making of course on a not "perturbed 
trajectory" { fjvu ,,,,, 00 ξρ }. 

The derivatives evaluation for other functional 
being by Freshe differentiable are making by the some 
scheme. 

As to functionals being only by Gato 
differentiable (by directions in functional space) the 
approximation described in [5,8] is used. The main 
elements of this approximation are directional 
derivatives of functionals like 
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where *ω  is a point in range of definition of )( *ωf . 
The evaluation of derivatives for such functional differs 
from above described scheme only in that the equation 
(44) must be solved with the right part of the form 
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The solvability of formulated problem of 
mathematical programming in functional space is 
proofing by references to theorems of extremum theory. 
That is about existence. As to uniqueness, in similar 
problems it is not essential: even if the solution is not 
unique, we satisfy with any optimal one. 
 
 
 

3.  NUMERICAL RESULTS 
 

The formulated problem was numerically solved 
using the programme, described in detail in [7]. Its 
adaptation is connected with discrete approximation of the 
continuous problem. As a result a set of FORTRAN 
programmes was elaborated which allows to synthesize the 
radiating surfaces of revolution by any conditions on 
geometry form and on antenna pattern.  

Figure 1, a shows the geometry. As a primary 
radiator a magnetic dipole is chosen, but it is not a serious 
restriction since any excitation with axial symmetry can be 
used. The function )(τϕ in right part of (7) will be 
changed only. Figure 1,b – pattern, Figure 1,c - 
geometry. 

In Figure 2 are represented the results of 
synthesis a surface having the pattern of a disk. So, the 
main bim is demanded to be in range 

]80,20[ 00=ΩM .The end points of contour Г  are 

fixed at 
).0;1()}(),({
);0;0()}(),({

=
=

βξβρ
αξαρ

 

So as the control is the set )}(),({ tvtu . Initial 
control )}(),({ 00 tvtu satisfies (30) and initial 
geometric form is a cone with cone angle 45°. The 
synthesized surface is very close to that of a disk and 
synthesized pattern is also close to a disk pattern. 
The result was achieved on 11-s iteration of the 
sequential linearization method. 

As the second example (Figure 3) was chosen the 
problem (23)-(33) with fixed end points of contour Г . 
The purpose was to synthesize the surface with pattern in 
region ]170,150[ 00=ΩM Initial control 

)}(),({ 00 tvtu ' satisfies (30). In Figure 3a and 
Figure 3b are represented the pattern and the 
corresponding contours Г  after 1-t, 6-s and 12-s 
iteration. The synthesized pattern satisfies the 
conditions and the synthesized surface has a smooth 
character so that easy can be reproduced technically. 

In Figure 4 are represented the results of contour 
synthesis with free end point | )}.(),( αξαρ The control 
in this case is },),(),({ 0000 ξρtvtu The desired pattern 
must be in region ]24,4[ 00=ΩM The initial control 
satisfies (33). In Figure 4a and Figure 4b are 
represented the patterns and contours after 1-t, 10-s 
and 12-s iteration correspondingly. The obtained 
surface as in previous case is smooth enough. The 
represented results demonstrate the wide 
possibilities of the proposed here technique for 
solving the antenna pattern optimal synthesis for 
geometry problem. 
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a. 

 
b. 

 
c. 

Figure 1. Initial surface area has been used the 
surface area of the cone: a – magnetic dipole; b – 

pattern; c - geometry. 

 
Figure 2. The results of synthesys a surface having a 

pattern of a disk. 
 

 
a. 

 

 
b. 

Figure 3. Magnetic dipole under the surface with 
fixed point of the coutour Г : a – pattern; b – 

geometry. 
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a. 

 
b. 

 
c. 

Figure 4. a - geometry with free end point of  
contour Г ;  the results of synthesys a surface: b – 

pattern; b - geometry. 
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