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Abstract. This paper is focused on photovoltaic (PV) installation fault detection techniques. 
Three methods of PV module fault detection were proposed, implemented, and tested on 
real PV plant located in Nürnberg, Germany. Proposed methods are based on calculation 
results produced using the Digital Twin (DT) concept. Power values at maximum power 
point (MPP) under standard test conditions are used during the calculations (as Pmpp). Pmpp 
distributions by each month method is based on the statistical distribution of all PV 
modules from the same plant grouped by months, global Pmpp distribution method uses all 
available data uses similar approach with no month-related specifics, and Pmpp average 
calculations method is based on the average points calculation for each module during the 
period. All of these approaches provide entirely accurate results and allow finding modules 
with faults. However, the boundary abnormal modules count varies in each method, and 
additional module-based analysis may be required based on the purpose (monosemantic 
results for the most abnormal modules against more comprehensive results which include 
boundary modules). 

 

Keywords:  Digital twin, photovoltaic, module degradation, module fault detection, fault 
detection. 

 

 Introduction 
 In the PV field, regarding the importance of sustainability, monitoring systems are a 
paramount component for yield assessment. Nevertheless, in the industrial production, fault 
detection remains a manually handled issue [1, 2]. 
 Most of the module faults are not stable over time and may affect the overall PV 
plant power generation in varying degrees. Problems may appear due to electrical issues, 
climate, location factors, soiling, shading, multiple connection issues, and others. Each type 
would affect the PV module’s performance. 
 The long term reliability of photovoltaic modules is crucial to ensure the technical 
and economic viability of PV as a successful energy source. The analysis of degradation 
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mechanisms of PV modules is critical to ensure the current lifetimes exceeding 25 years. [3, 
4, 5] 
 Faults are responsible for significant power loss, and sometimes, even dramatical 
damages are reported, such as fire hazard or material deterioration [1]. It is critical for PV 
plant’s cost-effectiveness, primarily due to the long-time payback and long-term warranty 
period of typical PV modules. 
 Therefore, regular monitoring and high-quality maintenance are critical for any PV 
plant. 
 Various ways of monitoring and analysis include visual inspections, I–V curve field 
measurements, thermal evaluations by IR imaging, artificial intelligence techniques, and 
measurements of the I–V characteristics. [6, 7, 8] Electroluminescence technique is also 
used as a method for detecting defects in PV modules [9]. 
 For customers, PV module characterization is essential to observe the output 
performance of their PV system and to proof intactness of single modules. For this purpose, 
reliable and nondestructive testing methods are desirable [10]. MPP parameters allow 
determining most of the defect types on different PV plant levels. Module-level faults may 
be found and analyzed using the telemetric data from the module’s sensors over time. DT 
virtual laboratory [11] helps to calculate additional module parameters for more detailed 
defect analysis and extensive monitoring data [12]. For example, abnormal resistance levels 
may indicate electrical issues. 
 It must be noted that new defects that arise when the module is in operation may 
appear in modules initially defect-free (called hidden manufacturing defects) [9]. 
 This paper is aimed at the detection of the individual PV module faults. Module 
arrays are usually built from similar module types, so with telemetric data from the sensors 
over time, each module could be analyzed and compared with other modules from this 
array in addition to the usual metrics. The main idea consists of two points. At first, all 
modules with defects need to be identified. Secondly, all abnormal boundary modules 
(which may have faults or not) should be separated from fault modules and partly analyzed. 
 Several approaches are presented based on a different distribution of apparent and 
boundary faults in modules: Pmpp distributions by each month, global Pmpp distribution, Pmpp avg 
calculations with two diagram types for additional accuracy. 

 

Methods of module efficiency analysis and fault detection 
 PV plant in Nürnberg, Germany, named Südstadt-Forum, is used for data aggregation 
and calculations in this paper. Plant includes three inverters (SUN2000-20KTL, Sinvert 
PVM17, and Sinvert PVM20 models) with 16 strings (PV module arrays) and 287 PV 
modules. Most of the strings consist of 18 PV monocrystalline modules – M190 (STORM 
Energy GmbH, Germany). 
 DT platform prepared API for module-by-module calculations based on input data. 
Input data includes the following parameters: voltage, current, temperature, irradiation 
from devices, temperature from devices, timestamp. These parameters are obtained by 
telemetry. During the experiment, all the data from June 2018 till November 2018 was 
used. Data was collected using Sunsniffer API. 
 The output contains the following params: power, voltage and current at MPP under 
standard test conditions (STC), series and parallel resistance, short circuit current and open-
circuit voltage params. 
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 On average, one new data point is acquired every 7 minutes. For example, Module 
1.1_1 has 3943 points during August after all the filtering on the app side. 
 Most of the filtering stays inside DT calculation except some simple app-side 
preprocessing. Preprocessing excludes data points with missing parameters (empty 
temperature, current, voltage, timestamp values).  
 Aggregated results for individual modules are passed to the DT calculation API. 
 Three methods of statistical data analysis and defective modules search based on DT 
Pmpp calculations were implemented: 

1) Power at MPP distributions by each month (Pmpp distributions by each month);  
2) Global power at MPP distribution (global Pmpp distribution); 
3) Average power at MPP calculations (Pmpp avg calculations and two diagram types for 

additional accuracy). 
 

 Power at MPP distributions by each month 
 This method is based on the statistical distribution of all PV modules from the same 
plant. Similar PV cell models (at least by performance in the same module array) allow us to 
compare all modules and detect anything abnormal. 
 Statistical distribution with various module types and performance levels requires 
dynamic intervals for additional accuracy and better visibility. 
 Dynamic bin width for statistical Pmpp distribution was calculated in the following 
way using Min-Max value Eq.(1): 

 

 𝑙𝑃𝑚𝑝𝑝  =  
𝑃𝑚𝑝𝑝max− 𝑃𝑚𝑝𝑝 𝑚𝑖𝑛

𝑘
, W (1) 

 

Where k – bin number, calculated using Eq.(2): 
 

 𝑘 =  √𝑛 (2) 
 

Where n – values count. k is an integer value (rounded up). 
 Diagrams of Pmpp statistical distribution using lPmpp as bin width by modules during 
2018 by months are presented in Figure 1. 

 

A) One outlier during June can be found in 124.27 – 129.92 W. Three more modules 
from range 163.82 – 169.47 W should be analyzed more. Additionally, one more outlier 
stays in 220.38 W and higher interval, which looks like an abnormal module, but not a 
defective one. Such a high Pmpp level across similar modules may be caused by a favorable 
module position (less shadowing effect, better angle, and others). 
 B) Two outliers during July can be found in 127.60 – 131.41 W interval. Three more 
modules from range 165.70 – 169.51 W should be analyzed more. 
 C) One outlier during August can be found in 134.21 – 137.65 W interval and also 
one more in 151.46 – 154.91 W. Two more modules from range 168.71 – 172.16 W should 
be analyzed more. 
 D) One outlier during September can be found in 143,25 – 146,08 W interval and 
also one more in 154.57 – 157.40 W. Four more modules from range 171.55 –  174.38 W 
should be analyzed more. 
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Figure 1. Distribution of Pmpp per modules during 2018. 

 

 E) One outlier during October can be found in 129.60 – 133.32 W interval. Also, four 
more modules should be analyzed more: 1 from range 166.80 – 170.52 W and three from 
range 170.52 – 174.24 W. 
 F) There’re multiple outliers during November: one in 81.59 – 88.69 W interval, one 
in 88.69 – 95.79 W, one in 109.99 – 117.09 W intervals. Two modules from 152.59 – 
159.59 W and nine modules from 159.59 – 166.79 W ranges also may be considered 
outliers and should be analyzed in a more detailed way. 
 Summary for outliers: June – 1 (+3 possible), July – 2 (+3 possible), August – 2 (+2 
possible), September – 2 (+4 possible), October – 1 (+4 possible), November – 3 (+11 
possible). Modules with outliers: 2.3_10 (June - 124.26 W, July - 127.59 W, August - 154.55 
W, September - 143.24 W, October - 129.6 W, November - 115.14 W), 2.2_16 (July - 130.8 W, 
August - 134.2 W), 1.1_11 (September - 157.08 W), 1.11_15 (November - 81.59 W), 1.12_11 
(November - 89.6 W). The total number of detected outliers for six months is 11 (+27 
possible), five fault modules found. 

 

 Global power at MPP distribution 
 This method is similar to Pmpp distributions by each month. However, additionally, it 
includes all available data points (as much as possible). In our case – all the data from June 
2018 till November 2018, 6 months in total) and may provide additional historical 
information about modules based on the period (e.g., module was normal during June – 
August period, and it became defective starting from September). 
 A combined diagram of Pmpp statistical distribution by modules during 2018 is 
presented in Figure 2. 



84 Digital Twin for PV module fault detection  

Journal of Engineering Science  December, 2020, Vol. XXVII (4) 

 
Figure 2. Global distribution of Pmpp per modules in June – November, 2018. 

 

 For this method, we use single and double distribution ranges. The most common 
double range is  176.23 – 182.99 W. All points from the left adjacent double range (169.47 
– 176.23 W) are considered as valid too. Points from the next single range (166.09 – 169.47 
W) should be analyzed more (possible outliers). Other points from the left side are 
considered as outliers. 
 Outliers from combined diagram: 1 in 81.59 – 84.97 W range, 1 in 88.35 – 91.73 W 
range, 1 in 112.01 – 115.39 W range, 1 in 122.15 – 125.53 W range, 1 in 125.53 – 128.91 
W range, 1 in 128.91 – 132.29 W range, 1 in 132.29 – 132.67 W range, 1 in 142.43 – 
145.81 W range, 1 in 152.57 – 155.95 W range, 3 in 155.95 – 159.33 W range, 5 in 159.33 
– 162.71 W range, 3 in 162.09 – 166.09 W range. 
 11 additional points for more detailed analysis stay in 166.09 – 169.47 W range. 
Next range has 76 points and we consider it as normal Pmpp values. 
 Modules with outliers: 
 1) All modules from the previous method: 2.3_10 (June - 124.26 W, July - 127.59 W, 
August - 154.55 W, September - 143.24 W, October - 129.6 W, November - 115.14 W), 
2.2_16 (July - 130.8 W, August - 134.2 W), 1.1_11 (September - 157.08 W), 1.11_15 
(November - 81.59 W), 1.12_11 (November - 89.6 W). 
 2) Additional modules: 1.5_1 (November - 158.93 W), 1.5_11 (November - 158.72 W), 
1.5_12 (November - 160.08 W), 1.5_3 (November - 161.54 W), 1.5_14 (November - 161.54 
W), 1.5_13 (November - 162, 51 W), 1.5_17 (November - 162.32 W), 1.9_8 (November - 
163.72 W), 1.5_9 (November - 163.76 W). 
 The total number of detected outliers for six months is 20 (+11 possible), 14 fault 
modules found. 
 Both ways of comparing provide quite a good view of defective modules. 
Nevertheless, single-month diagrams give an only clear understanding of modules with 
defects, whether the combined chart allows to separate all boundary values too (this next 
range above which contains 76 points while the previous range has only 11 points). Also, 
additional abnormal points and modules were found due to month specifics (November 
values look average in comparison with other November values in the previous method). 
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 Average power at MPP calculations 
 The third method is based on the average points calculation for each module during 
the period. Then each module’s deviation for each month allows us to find abnormal 
months for this specific module using its data from other months. Also, it shows unstable 
modules that vary a lot from month to month in performance. 
Average Pmpp points are calculated for each module using the Eq.(3): 

 

 𝑃𝑚𝑝𝑝 𝑎𝑣𝑔  =  
∑ 𝑃𝑚𝑝𝑝
𝑚
𝑖
𝑚

 (3) 
 

Where m – number of months. 
 For the next analysis, average point difference percentage values were calculated 
using the Eq.(4): 

 

 𝑃𝑚𝑜𝑛𝑡ℎ %  =  𝑃𝑚𝑝𝑝− 𝑃𝑚𝑝𝑝 𝑎𝑣𝑔

𝑃𝑚𝑝𝑝 𝑎𝑣𝑔
 (4) 

 

 Pmpp avg calculations method of defective module detection is presented in Figure 3. 
 

 
Figure 3. Average point distribution by deviation percentage. 

 

This figure contains all Pmonth % values. In general, typical points should lie near 0% scale, 
both positive and negative values could be classified as outliers. 
 Module 2.2_16 has 5/5 outliers (one value is missing due to data issues for this 
specific month + module case). Module 2.3_10 has 3/6 outliers. Module 2.1_11 has 1/6 
outliers. Module 1.12_11 has 5/5 outliers (one value is missing due to data issues for this 
specific month + module case). Module 1.11_15 has 6/6 outliers. Also, there are plenty of 
points for analyzing closer to the left diagram’s part (especially in November). 
 An additional graph using only Pmpp avg points was built to filter these boundary points 
and find fault modules. This graph is presented in Figure 4. 
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Figure 4. Average points of all modules. 

 

 All extremum values of this diagram represent the modules mentioned above:  
module 2.2_16, module 2.3_10, module 2.1_11, module 1.12_11, module 1.11_15. 
Furthermore, in comparison with the previous chart, there are no additional boundary 
values. Five points represent five modules, which are the most suitable modules for further 
analysis. Table 1 includes Pmpp avg and Pmonth % values for two regular modules, and all 
detected defective modules (yellow values) for comparison. 

Table 1 
Pmpp avg values and deviations per month 

 Pmpp avg June July August September October November 
Module 
1,11_5 

181.95 -2.02% -1.20% 0.73% 0.48% 1.42% 0.58% 

Module 
1,12_3 

179.6 -1.76% -0.22% 1.01% 1.12% 2.16% -2.32% 

Module 
1,11_15 

162.31 9.36% 8.64% 10.52% 10.28% 10.93% -49.73% 

Module 
1,12_11 

160.78 10.93% 11.22% 11.83%  10.29% -44.26% 

Module 
2,1_11 

194.5 13.31% -3.53% -3.33% -1.54% -2.05% -2.86% 

Module 
2,2_16 

161.96 8.26% 
-

19.24% 
-17.13%  12.94% 15.18% 

Module 
2,3_10 

132.4 -6.14% -3.63% 16.73% 8.19% -2.12% -13.04% 

 

 This combined table with the data from both Figures above allows finding modules 
with faults. Additionally, most of the points lay in the same range with small fluctuations in 
range (-5%; 5%). Some points outside this range should be analyzed more: 25 points below 
(<-5%) and 24 points above (>5%) from Figure 3. These values include points from the Table 
1, so 25 - 6=19 points below, 24 - 15=9 points above, 19 + 9 = 28 possible outliers. 
 The total number of detected outliers for six months is 21 (+28 possible), five fault 
modules found. 
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 Conclusions 
 Pmpp distributions by each month allows us to find the most abnormal modules. 
 Global Pmpp distribution allows the same as Pmpp distributions by each month and an 
additional clear border between points, which could be additionally analyzed. 
 Pmpp avg calculations with two diagram types provide results from both the above 
methods (diagram with the most abnormal modules and chart with all additional boundary 
modules). 
 Thus three methods of module efficiency analysis are proposed based on Pmpp 
calculation results using physical and mathematical models from DT [11, 12]. 
 All proposed methods could be used during the PV plant’s operability monitoring. 
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