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Abstract. We study some properties of left product of two subcategories: one coreflective and one
reflective in the category of local convex topological vectorial Hausdorff spaces. In this work on
examined the situation generated by a structures of factorization (P”,Z"”) with certain properties,
allowing to prove that the left product of some coreflective subcategories with any P” - reflective
subcategory is one and the same. In addition, be indicated examples of coreflectors and reflectors
functors which commutes.
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UNELE PROPRIETATI ALE PRODUSULUI DE STANGA
A DOUA SUBCATEGORII

Rezumat. Vom studia unele proprietati ale produsului de stanga a doua subcategorii: una core-
flectiva si una reflectiva din categoria spatiilor topologice Hausdorff vectoriale local convexe. In
acest articol se va examina situatia generata de structurile de factorizare (P”,Z”) cu anumite pro-
prietati, care va permite sd demonstram ca produsul de stanga a unor subcategorii coreflective cu
orice P” - subcategorie reflectivd este una si aceiagi. In plus, vor fi indicate example de functori
coreflectori si reflectori care comuta.

Cuvinte cheie: subcategorie coreflectiva si reflectiva , produsul de stanga a doud subcategorii,
subcategoria coreflectiva a spatiilor topologice Mackey, subcategoria spatiilor cu topologie slaba.
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In category C2V of the local convex topological vectorial Hausdorff spaces are studied the
properties of the left product of two subcategories K %5 R - one coreflective K and one
reflective R. On indicate sufficient conditions, that this product should be a coreflective
subcategory (Theorem 2). We indicate examples when this product is not a coreflective
subcategory (Proposition 1). We denote:

eR = {e € Epi|r(e) € Zso}, and pukC = {m € Mono | k(m) € Iso},
where r : C3)V — R and k : C9V — K are the respective functors. It is known that the
((eR) 0 &, ((eR) o EIE)) which we will note (P”(R),Z"(R)) or (P”,Z") is a structure of
factorization in CoV, (to see [1]). Here (£,, M,,) is a structure of factorization defined by
class M,, of universal monomorphisms (to see [1], [4]).

R is the smallest element in the class of P”-reflective subcategories and there is the
smallest element M in the K(Z”) class of Z”-reflective subcategories.  For any
K € K(Z") and anything R; € R(P”) we have K = K #4 R1 (Theorem 3). It is demon-
strates that M = M %, R, where M is the subcategory of Mackey spaces(Theorem 7). If R
contains subcategory S of the spaces with weak topology, then functors m : CoV — M and
r:CoV — R commute: m -r = r-m (Corollary 2).

We will use the following notation.

The structure of factorization:
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(Eu, M) = (the class of universal epimorphisms, the class of precise monomorphisms)
= (the class of surjective applications, the class of topological inclusions);

(&€p, My,) = (the class of precise epimorphisms, the class of universal monomorphisms
)(to see [1]);

The coreflective and reflective subcategory:

M - the coreflective subcategory of spaces with Mackey topology;

Y. - the coreflective subcategory of the spaces with the strongest locally convex topol-
ogy;

S - the subcategory of spaces with weak locally convex topology;

IT - the subcategory of complete spaces with a weak topology;

K - the class of nonzero coreflective subcategories;

R - the class of nonzero reflective subcategories.

Concerning the notions and notations in category Co) see [6].

Either B a class of bimorphisms. We denote K(B), (respectively R(B)) - the class of
B-coreflective subcategories (respectively B-reflective).

Let IC be is a epicoreflective subcategory, and R is a monoreflective subcategory of
category C with corresponding functors £ : C — K and r : C — R. For any object X of
category C either kX : kX — X and ¥ : X — rX K-coreplica and R-replica to this object.
Further, either »*X : kX — rkX R-replica of object kX, and 7(k%) : rkX — rX that
unique morphism for which

r(kX) R = XX (1)

On morphisms X and r(kX) we build the pull-back square

X wX = r(BY) - X (2)

From equality (1) there exists a morphism ¢X so that

WX X g ©
fX tX _ T’kX (4)
kX r”
\\\‘~\\[X —————— 5 l’kX
le .. Sl I Jr(k")
’,XV—"’ ol
X £ rX

Diagram of the left product (PS)

We denote by W = K x5 R the full subcategory of category C consisting of all objects
isomorphic to objects form wX.

Definition 1. The subcategory W = K xR is called the s-product or the left product
of subcategories K and R.

Duality is defined the right product of two subcategories V = K x4 R.

36



Check easy as correspondence X — wX defines a functor w : C — W. We shall say
that W is a coreflective subcategory, if w is an coreflector functor.

Examples have been constructed, showing that the left product of two subcategories
is not a coreflective subcategory. Thereby emerged necessity to find sufficient conditions
when the left product is a coreflective subcategory. In the paper [3] were established a series
of necessary and sufficient conditions for that left product to be a coreflective subcategory.

The following theorems indicates sufficient conditions for that left product to be
a coreflective subcategory, and the right product of two subcategories to be a reflective
subcategory.

THEOREM 1. 1. Let KC be a M-coreflective subcategory of the category C. Then for any
reflective subcategory R of the category C we have:

a) the left product IKC xs R is a M,-coreflective subcategory of category C;

b) the right product KC x4 R is a reflective subcategory of category C.

1. Let R be a &,-reflective subcategory of category C. Then for any coreflective
subcategory IC of category C we have:

a) the right product IC x4 R is a E,-reflective subcategory of category C;

b) the left product K x5 R is a coreflective subcategory of category C.

For the category C2V previous theorem can be formulated as such:

THEOREM 2. 1. Let K be is a coreflective subcategory of category CoV and M C K. Then
for any reflective subcategory R of category C2V we have:

a) the left product K %5 R is a coreflective subcategory of category CoV and
M C K *sR;

b) the right product K x4 R is a reflective subcategory of category CaV .

19, Let R be is a reflective subcategory of category CoV and S C R. Then for any
coreflective subcategory IC of category Co)V we have:

a) the right product K xq R is a reflective subcategory of category C2V and
SCKx*x4R;
b) the left product K x5 R is a coreflective subcategory of category CoV .
c,V c,v C,V c,V

<) R

St
“

3 1 z o -

K *R K *R. K *R K *dR
The above diagram indicates the cases when the left product is a coreflective subcategory,
and cases where the right product is a reflective subcategory. The left product is not always
a reflective subcategory. In category C2)V and in the category Th of Tihonov spaces there

are examples when this product is not a reflective subcategory (see [5]).
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PROPOSITION 1. In the category C2V
1. The right product ¥ x4 11 is not a reflective subcategory.
2. The left product ¥ x4 I1 is not a coreflective subcategory.
Proof. 1. We build the following diagram for object X does not belong to subcategory II.

o)
cX --*% onX
GX PO g = k vX GnX
v X _> vX .
~~~~~~~~~~~ ul
X - ™ =3 X
Because 7% is un mono, it results as well o(7X) it’s the same. Hence o(7*) is sectionalized.

So and v¥ is sectionalized. If vX is un epi, then it is un iso. In this case 7% € &, N My,

X is un iso.

ie. m

2. Is demonstrated in an analogous manner. O

In cases where the left or right product is not a coreflective (respectively reflective)
subcategory recourse is had to the factorization of these products (see [5]).

Let R be a nonzero reflective subcategory of category CoV, for which we fix the
structure of factorization (P”,Z") = (P"(R),I"(R)), where P"(R) = (¢R) o &, (see [1]).
This structure divides both the lattice IK of nonzero coreflective subcategories, as well as
lattice R of nonzero reflective subcategories in three classes:

K - K('P”), K(I//), K('P”,Iﬁ);

R - R(P"), R(Z"), R(P",T").
where K(P") = {K € K|K is P"-coreflective}, K(Z") = {K € K|K is Z"-coreflective},
KP",7") = {K\ (K(P") UK(Z"))} U {C2V}, and analogue division of lattice R.
LEMMA 1. K(Z") € K(My).

C, vV

=

Proof. Because Z” C My, it follows that any Z”-coreflective subcategory it is also
M,-coreflective. It remains to be remembered that M is the smallest element in the class
K(M,). O

Thus class K(Z"”) possess the smallest element that we will write M and the class
R(P”) - the smallest element R. The M-coreplique of an object X is obtained by performing
(P", I")-factorization of the Y-coreplique o : 0 X — X
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i X ! X

oX

Then ¥ is M-coreplica of the object X.
LEMMA 2. Let K € K be a coreflective subcategory for which the product K+sR is a coreflec-
tive subcategory, and (P",I") = (P"(R),Z"(R)). The following statements are equivalent:
1. K e K(M,).
2. Kxs R e K(Z).
Proof. 1 = 2. Because M C K, the product K %4 R is a coreflective subcategory (Theorem
2). Let’s build the diagram (PS) for un arbitrary object X of category CoV .

kX\ rkX

< X
ke owx f=r )

X rX

In equality
X = wX X (1)

kX € My, and t* € Epi. Because class M, is Epi-cohereditary (see [1]), we deduce that
wx € M,. So
rX X = T(kX) X (2)

is an pull-back square and w* € M,. According to the Theorem 7.3 [4] wX € T" = T"(R).

2 = 1. In equality
TkX _ TwX . tX (3)

kX € My. So and t¥ € M,. Thus w® € T ¢ M, and t* € M,. From equality (1) it
results that kX € M,. O
THEOREM 3. Let K be a coreflective subcategory of category CoV, M C K, and (P",1") =
(P"(R),Z"(R)). Then the following statements are equivalent:

1. K e K(Z").

2. K=K %5 R.

3. For any element Ry € R(P"), we have K = K %5 Ry.
Proof. We will demonstrate the following implications: 1 = 2 —= 3 = 1.

1 = 2. For arbitrary object X of the category CoV let kX : kX — X K-coreplica
be, and X : X — rX and r*¥ : kX — rkX the R-replicas of the respectively objects. We

have the commutative square
rX kX = (B R (1)

Because K € K(Z"), it results that kX € Z” and the square (1) is pull-back (Theorem 7.3
[4]). So K =K *sR.
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2 = 3. Let K = K3 R and Ry € R(P”) be. For the object X € |C2V| let be
EX kX — X K-coreplica, 7‘{( : X — rX and rle : kX — r1kX Ri-replicas of respective
objects, and ¥ : X — rX and r*¥ : kX — rkX R-replicas of respective objects. Because
R C R1 we deduce that

TkX _ frlkX . T]fX, (2)
X=X @

for two morphisms f™*X g "X We still have the equals:
S =) Y (@)
Ay r(kX) kX (5)
From these results we have and the equality
Frer (k) = ek - iR (6)

According to the hypothesis, the square (5) is pull-back, and in this diagram all morphisms

are bimorphisms. It is easy to check that square (4) is also pull-back.

7 1
kX —————- =L > rlkX——--——-——f ___________ SrkX
b r(k*
k (&%) (k™)
P frlX
X Tl SRR > X

3 = 1. Because K = K %4 R, it results that the square
rX kX = (B X (7)

is pull-back. On the other hand M C K. So k¥ € M,. Therefore k¥ e Z” and
KeKI". o

The reflective subcategory R establishes the following relationship of R-equivalence
in the class K(My): K1 ~g Ko <= K1 *s R = K2 *s R. From Lemma 2 and the fact that
(K#sR)*sR = Kx*sR ([3], Proposition 4.2) We infer that any element of the lattice K(M,,)
Is equivalent to an element of the lattice K(Z"). Further,

KCKxsR

So K s R is the biggest element in its equivalence class A(K).

LEMMA 3. Let A be a class of R-equivalence elements. Then W is the biggest element in
the class A, where W = K x5 R with K € A.O

LEMMA 4. Let K1 ~r Ko and K1 C K C Kq be. Then Ky ~g K ~ K2.0O
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Let A be a class of R-equivalence elements with the biggest element W. According

mentioned above for any element K € A we have
rkX ~rwX,vX € |C2V|.

Let be
A =n{K|K € A}.

A’ is a coreflective subcategory and because M C K for any K € A, we deduced that

M c A'. Tt is evident, the class A possesses the smallest element, iff A" € A.

LEMMA 5. Let A" € A be. Then A = {K € K(M,)|A" C K Cc W}, where W = A’ x, R.O
The following result chows that the smallest element M of the class K(Z"(R)) can

also be obtained as a left product, without resorting to the factorization structure (P”,Z") =

(P"(R),Z"(R)).

THEOREM 4. M = M %, R.

Proof. We build the diagram (PS) for an arbitrary object X of category C2V and for sub-

categories M and R.

rX

We write the respectively equality
X omX = r(mX) - rmX, (1)

where m¥ : mX — X, is M-coreplica of object X, and ¥ and r™¥ - R-replicas of respective

objects and equality (1) takes place for a morphism r(m™).

X = () - 2)

: (3)

X = X g, ()

for a morphism tX. We have X, m% € M, and from equality (1) it results that r(m¥X) -
rmX e M,.

Because class M, is Epi-cohereditary (see [1]) and rX € Epi, we deduce that

r(m*) € M. Then in pull-back square (2) it results that wX € M,, and from equality (3)

we deduce that wX € &,. So in equality (3) all morphisms belong to the class £, N M,,. As
mentioned above (see [3]) f¥ is the R-replica of object wX, and r(m*X) = r(wX). So square
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(2) is pull-back, and w* € M,. According to the Theorem 7.3 [4] wX € T"(R). Further,
tX is un epi. Then from equality (4) results that t* € eR. Because P"(R) = (¢R) o &, we
deduce that tX € P"(R). So we get that (3) is (P”,Z")-factoring morphism m¥, and the
coreflective subcategory W = M %, R is equal to the subcategory M. O

COROLLARY 1. 1. Class A(M) of elements in K(M,) R-equivalents with element M
possesses the biggest element M = M x4 R, and

AM) = {K e KIM,)IM C K C (M=xsR)}.

2. Because CoV xs R = CoV the class of elements R-echivalents with C3)V contains one single
element C2). O
From the previous results, we have the following presentation of the latice K(M,,)

and the classes of R-equivalence.

M 1

Let’s highlight how the application ;R works on the class K(M,,).

Let R € R be. This reflective subcategory generating the factorization structure
(P",7") = (P"(R),Z"(R)). Respectively, this structure divides the lattice K of nonzero
coreflective subcategories into three classes:

K - K(P"), KZ"), K(P",I").

Remark 1. 1. Always K(Z"(R)) C {T € K|]M C T}. But these classes may be different.

2. R(P"(R)) ={H e RIR C H}.

3. Let T, i e RMy), T CTi CT*sR be. Tnen T x3 R = T1 *s R (see[3]).
THEOREM 5. Let R be a reflective subcategory of category CoV, and
(P",T") = (P"(R),T"(R)). Then:

1. Kxs R e K(Z") & K € K(M,).

2. KxsR=K < K e K(IZ").

3. For any K € A(M) and all T € R(Z") it takes place equality K+, T = M %, R.0

Let Ry C Ry be two elements of the lattice R. Then Z”(Ry) C Z”(Rs), and
P"(R2) C P"(R1). There is the following relationship between these classes.
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C,v

e

R

THEOREM 6. Let K € K, R € R and eR C pkC be. Then:

1. SCR.

2. The functor w : CoV — K x5 R is an reflector functor.

3. The functors w : CoV — K xs R and r : C2V — R commute: w-r =r - w.

Proof. 1. Because pulC C &, it results that eR C &,, The conditions eR C &, and
S C R are equivalents.

2. It results from Theorem 2.

3. We examine the Diagram (PS) for subcategory (IC,R) (see the Diagram from
Lemma 2). We have rwX = rkX. Further, krX = kX, since eR C K. Because "™ = 1,
it follows that f™* =1, or w™* = 1. Therefore wrX = rkrX = rkX. O
COROLLARY 2. Either the subcategory R is E-reflective (S C R). Then the coreflector
functor m : CoV — M and the reflector r : CoV — R commute: M -r =1 -m. O

Analogue takes place transformation of the class R(&,) (class of &,-reflective subcat-
egories) by the right product.

Ezxample 1. We denote R(S) ={L € R|[£L C S. Let £ € R(S)} be. Then

L. Z(L) c T"(S) = M,

2. K(Z"(L)) = {CV}. K(P"(L)) =K. K(P", ") = {C2V}

c,v c,v
5 K
R
M
S I
9
IT >

Ezample 2. Let R € R(M,) be. Then P"(R) = (¢R) o &y, where (¢R) C M,, and
K(P"(R)) = K(&p).
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Class K(&,) contains the element Co) and with each element contains the bigger
elements of the lattice K.
Problem. The class K(&,) contains other elements, except the element {C2V}?
LEMMA 6. Let R € R(M,) be (I'y € R). Then (R) L (£, N M,).0
COROLLARY 3. Let R € R(M,) be. Then K(Z"(R)) = {C2V}.O
PROPOSITION 2. Let K € M and K # M be. Then K € K(P,T).

X X
C
mX

v

kX X

Proof. Let m¥ : mX — X be the M-coreplica of X, and vg( : kX — mX K-coreplica of

X . vX does not belong

X

mX. There exist an object X so that v is not isomorphism. So m
to the class M, and m¥ - vX does not belong to the class &,, because m* would be an
isomorphism.O

Ezample 3. Let £ € R\(R(S) UR(M,)) be, and P"(L) = (L) o &,. So P"(L) intersects
with M,: P"(L)N M, = L. So here it results that K(P” (L)) NK(M,) may contain other

elements except the element Co).
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