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Abstract. We study some properties of left product of two subcategories: one coreflective and one

reflective in the category of local convex topological vectorial Hausdorff spaces. In this work on

examined the situation generated by a structures of factorization (P ′′, I ′′) with certain properties,

allowing to prove that the left product of some coreflective subcategories with any P ′′ - reflective

subcategory is one and the same. In addition, be indicated examples of coreflectors and reflectors

functors which commutes.
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UNELE PROPRIETĂŢI ALE PRODUSULUI DE STÂNGA

A DOUĂ SUBCATEGORII

Rezumat. Vom studia unele proprietăţi ale produsului de stânga a două subcategorii: una core-

flectivă şi una reflectivă din categoria spaţiilor topologice Hausdorff vectoriale local convexe. În

acest articol se va examina situaţia generată de structurile de factorizare (P ′′, I ′′) cu anumite pro-

prietăţi, care va permite să demonstrăm că produsul de stânga a unor subcategorii coreflective cu

orice P ′′ - subcategorie reflectivă este una şi aceiaşi. În plus, vor fi indicate example de functori

coreflectori şi reflectori care comută.

Cuvinte cheie: subcategorie coreflectivă şi reflectivă , produsul de stânga a două subcategorii,

subcategoria coreflectivă a spaţiilor topologice Mackey, subcategoria spaţiilor cu topologie slabă.
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In category C2V of the local convex topological vectorial Hausdorff spaces are studied the

properties of the left product of two subcategories K ∗s R - one coreflective K and one

reflective R. On indicate sufficient conditions, that this product should be a coreflective

subcategory (Theorem 2). We indicate examples when this product is not a coreflective

subcategory (Proposition 1). We denote:

εR = {e ∈ Epi|r(e) ∈ Iso}, and µK = {m ∈Mono | k(m) ∈ Iso},
where r : C2V → R and k : C2V → K are the respective functors. It is known that the

((εR) ◦ Ep, ((εR) ◦ Ebp)) which we will note (P ′′(R), I ′′(R)) or (P ′′, I ′′) is a structure of

factorization in C2V , (to see [1]). Here (Ep,Mu) is a structure of factorization defined by

class Mu of universal monomorphisms (to see [1], [4]).

R is the smallest element in the class of P ′′-reflective subcategories and there is the

smallest element M in the K(I ′′) class of I ′′-reflective subcategories. For any

K ∈ K(I ′′) and anything R1 ∈ R(P ′′) we have K = K ∗sr R1 (Theorem 3). It is demon-

strates thatM = M̃ ∗sR, where M̃ is the subcategory of Mackey spaces(Theorem 7). If R
contains subcategory S of the spaces with weak topology, then functors m : C2V −→M and

r : C2V −→ R commute: m · r = r ·m (Corollary 2).

We will use the following notation.

The structure of factorization:
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(Eu,Mp) = (the class of universal epimorphisms, the class of precise monomorphisms)

= (the class of surjective applications, the class of topological inclusions);

(Ep,Mu) = (the class of precise epimorphisms, the class of universal monomorphisms

)(to see [1]);

The coreflective and reflective subcategory:

M̃ - the coreflective subcategory of spaces with Mackey topology;

Σ - the coreflective subcategory of the spaces with the strongest locally convex topol-

ogy;

S - the subcategory of spaces with weak locally convex topology;

Π - the subcategory of complete spaces with a weak topology;

K - the class of nonzero coreflective subcategories;

R - the class of nonzero reflective subcategories.

Concerning the notions and notations in category C2V see [6].

Either B a class of bimorphisms. We denote K(B), (respectively R(B)) - the class of

B-coreflective subcategories (respectively B-reflective).

Let K be is a epicoreflective subcategory, and R is a monoreflective subcategory of

category C with corresponding functors k : C → K and r : C → R. For any object X of

category C either kX : kX → X and rX : X → rX K-coreplica and R-replica to this object.

Further, either rkX : kX → rkX R-replica of object kX, and r(kX) : rkX → rX that

unique morphism for which

r(kX) · rkX = rX · kX . (1)

On morphisms rX and r(kX) we build the pull-back square

rX · wX = r(kX) · fX . (2)

From equality (1) there exists a morphism tX so that

wX · tX = kX , (3)

fX · tX = rkX . (4)

IrkX
It

X
kX

X rX

Ir(k   )
X

r
X

iwX

Ir
IkX

If
IX

Ik
X

Iw
X

Diagram of the left product (PS)

We denote byW = K∗sR the full subcategory of category C consisting of all objects

isomorphic to objects form wX.

Definition 1. The subcategoryW = K∗sR is called the s-product or the left product

of subcategories K and R.

Duality is defined the right product of two subcategories V = K ∗d R.
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Check easy as correspondence X 7→ wX defines a functor w : C → W . We shall say

that W is a coreflective subcategory, if w is an coreflector functor.

Examples have been constructed, showing that the left product of two subcategories

is not a coreflective subcategory. Thereby emerged necessity to find sufficient conditions

when the left product is a coreflective subcategory. In the paper [3] were established a series

of necessary and sufficient conditions for that left product to be a coreflective subcategory.

The following theorems indicates sufficient conditions for that left product to be

a coreflective subcategory, and the right product of two subcategories to be a reflective

subcategory.

THEOREM 1. 1. Let K be a Mu-coreflective subcategory of the category C. Then for any

reflective subcategory R of the category C we have:

a) the left product K ∗s R is a Mu-coreflective subcategory of category C;

b) the right product K ∗d R is a reflective subcategory of category C.

10. Let R be a Eu-reflective subcategory of category C. Then for any coreflective

subcategory K of category C we have:

a) the right product K ∗d R is a Eu-reflective subcategory of category C;

b) the left product K ∗s R is a coreflective subcategory of category C.

For the category C2V previous theorem can be formulated as such:

THEOREM 2. 1. Let K be is a coreflective subcategory of category C2V and M̃ ⊂ K. Then

for any reflective subcategory R of category C2V we have:

a) the left product K ∗s R is a coreflective subcategory of category C2V and

M̃ ⊂ K ∗s R;

b) the right product K ∗d R is a reflective subcategory of category C2V.

10. Let R be is a reflective subcategory of category C2V and S ⊂ R. Then for any

coreflective subcategory K of category C2V we have:

a) the right product K ∗d R is a reflective subcategory of category C2V and

S ⊂ K ∗d R;

b) the left product K ∗s R is a coreflective subcategory of category C2V.
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The above diagram indicates the cases when the left product is a coreflective subcategory,

and cases where the right product is a reflective subcategory. The left product is not always

a reflective subcategory. In category C2V and in the category Th of Tihonov spaces there

are examples when this product is not a reflective subcategory (see [5]).
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PROPOSITION 1. In the category C2V
1. The right product Σ ∗d Π is not a reflective subcategory.

2. The left product Σ ∗s Π is not a coreflective subcategory.

Proof. 1. We build the following diagram for object X does not belong to subcategory Π.

IspX

Iu X

sX

X pX

Is p( )
X

p
X

IvX
Is

IpX
Ig   = k

IX

Is
X

Iv
X

IvX

Because πX is un mono, it results as well σ(πX) it’s the same. Hence σ(πX) is sectionalized.

So and vX is sectionalized. If vX is un epi, then it is un iso. In this case πX ∈ Eu ∩Mu,

i.e. πX is un iso.

2. Is demonstrated in an analogous manner. 2

In cases where the left or right product is not a coreflective (respectively reflective)

subcategory recourse is had to the factorization of these products (see [5]).

Let R be a nonzero reflective subcategory of category C2V , for which we fix the

structure of factorization (P ′′, I ′′) = (P ′′(R), I ′′(R)), where P ′′(R) = (εR) ◦ Ep (see [1]).

This structure divides both the lattice K of nonzero coreflective subcategories, as well as

lattice R of nonzero reflective subcategories in three classes:

K - K(P ′′), K(I ′′), K(P ′′, I ′′);
R - R(P ′′), R(I ′′), R(P ′′, I ′′).

where K(P ′′) = {K ∈ K|K is P ′′-coreflective}, K(I ′′) = {K ∈ K|K is I ′′-coreflective},
K(P ′′, I ′′) = {K \ (K(P ′′) ∪K(I ′′))} ∪ {C2V}, and analogue division of lattice R.

LEMMA 1. K(I ′′) ⊂ K(Mu).

C  V
2

.

.

S

K

M

K( )M
mu

..
_

M

K( )P,   I .//

C  V
2

R( )I

.

.

P

R

..
R

R( )P
// //

K( )P
//

// R( )P,   I
////

K( )I
//

Proof. Because I ′′ ⊂ Mu, it follows that any I ′′-coreflective subcategory it is also

Mu-coreflective. It remains to be remembered that M̃ is the smallest element in the class

K(Mu). 2

Thus class K(I ′′) possess the smallest element that we will write M and the class

R(P ′′) - the smallest elementR. TheM-coreplique of an object X is obtained by performing

(P ′′, I ′′)-factorization of the Σ-coreplique σX : σX → X
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σX = iX · pX .

X
Ip

X

IsX
Ii

X

IpX

Then iX is M-coreplica of the object X.

LEMMA 2. Let K ∈ K be a coreflective subcategory for which the product K∗sR is a coreflec-

tive subcategory, and (P ′′, I ′′) = (P ′′(R), I ′′(R)). The following statements are equivalent:

1. K ∈ K(Mu).

2. K ∗s R ∈ K(I ′′).
Proof. 1⇒ 2. Because M̃ ⊂ K, the product K ∗s R is a coreflective subcategory (Theorem

2). Let’s build the diagram (PS) for un arbitrary object X of category C2V .

IrkX

It
X

IkX

X rX

Ir(k   )
X

r
X

iwX

Ir IkX

If  =r
Ik X

Iw
X

IwX
X

In equality

kX = wX · tX (1)

kX ∈ Mu, and tX ∈ Epi. Because class Mu is Epi-cohereditary (see [1]), we deduce that

wX ∈Mu. So

rX · wX = r(kX) · rwX , (2)

is an pull-back square and wX ∈Mu. According to the Theorem 7.3 [4] wX ∈ I ′′ = I ′′(R).

2⇒ 1. In equality

rkX = rwX · tX (3)

rkX ∈ Mu. So and tX ∈ Mu. Thus wX ∈ I ′′ ⊂ Mu and tX ∈ Mu. From equality (1) it

results that kX ∈Mu. 2

THEOREM 3. Let K be a coreflective subcategory of category C2V, M̃ ⊂ K, and (P ′′, I ′′) =

(P ′′(R), I ′′(R)). Then the following statements are equivalent:

1. K ∈ K(I ′′).
2. K = K ∗s R.

3. For any element R1 ∈ R(P ′′), we have K = K ∗s R1.

Proof. We will demonstrate the following implications: 1 =⇒ 2 =⇒ 3 =⇒ 1.

1 =⇒ 2. For arbitrary object X of the category C2V let kX : kX → X K-coreplica

be, and rX : X → rX and rkX : kX → rkX the R-replicas of the respectively objects. We

have the commutative square

rX · kX = r(kX) · rkX . (1)

Because K ∈ K(I ′′), it results that kX ∈ I ′′, and the square (1) is pull-back (Theorem 7.3

[4]). So K = K ∗s R.
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2 =⇒ 3. Let K = K ∗s R and R1 ∈ R(P ′′) be. For the object X ∈ |C2V| let be

kX : kX → X K-coreplica, rX1 : X → r1X and rkX1 : kX → r1kX R1-replicas of respective

objects, and rX : X → rX and rkX : kX → rkX R-replicas of respective objects. Because

R ⊂ R1 we deduce that

rkX = f r1kX · rkX1 , (2)

rX = f r1X · rX1 , (3)

for two morphisms f r1kX şi f r1X . We still have the equals:

rX1 · kX = r1(k
X) · rkX1 , (4)

rX · kX = r(kX) · rkX . (5)

From these results we have and the equality

f r1X · r1(kX) = r(kX) · f r1kX . (6)

According to the hypothesis, the square (5) is pull-back, and in this diagram all morphisms

are bimorphisms. It is easy to check that square (4) is also pull-back.

IrkXkX

X

Ir  kX

i

rX
i

r  X

IkX

If
Ir X

Ir
Ik X

Ir k( )X

Ir
X

Ir
IX

1

1

1

1

If
Ir  kX1

Ir
Ik X

1

Ir k( )X

1

3 =⇒ 1. Because K = K ∗s R, it results that the square

rX · kX = r(kX) · rkX (7)

is pull-back. On the other hand M̃ ⊂ K. So kX ∈ Mu. Therefore kX ∈ I ′′, and

K ∈ K(I ′′). 2

The reflective subcategory R establishes the following relationship of R-equivalence

in the class K(Mu): K1 ∼R K2 ⇐⇒ K1 ∗s R = K2 ∗s R. From Lemma 2 and the fact that

(K∗sR)∗sR = K∗sR ([3], Proposition 4.2) We infer that any element of the lattice K(Mu)

Is equivalent to an element of the lattice K(I ′′). Further,

K ⊂ K ∗s R

So K ∗s R is the biggest element in its equivalence class A(K).

LEMMA 3. Let A be a class of R-equivalence elements. Then W is the biggest element in

the class A, where W = K ∗s R with K ∈ A.2

LEMMA 4. Let K1 ∼R K2 and K1 ⊂ K ⊂ K2 be. Then K1 ∼R K ∼R K2.2
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Let A be a class of R-equivalence elements with the biggest element W . According

mentioned above for any element K ∈ A we have

rkX ∼ rwX, ∀X ∈ |C2V|.

Let be

A′ = ∩{K|K ∈ A}.

A′ is a coreflective subcategory and because M̃ ⊂ K for any K ∈ A, we deduced that

M̃ ⊂ A′. It is evident, the class A possesses the smallest element, iff A′ ∈ A.

LEMMA 5. Let A′ ∈ A be. Then A = {K ∈ K(Mu)|A′ ⊂ K ⊂ W}, where W = A′ ∗s R.2

The following result chows that the smallest element M of the class K(I ′′(R)) can

also be obtained as a left product, without resorting to the factorization structure (P ′′, I ′′) =

(P ′′(R), I ′′(R)).

THEOREM 4. M = M̃ ∗s R.

Proof. We build the diagram (PS) for an arbitrary object X of category C2V and for sub-

categories M̃ and R.

IrmX=rwX

It
X

ImX

X rX

Ir(m   )=
X

r
X

iwX

Ir
ImX

If  =r IX
ImX

Iw
X

IwX

Ir(w  )X

We write the respectively equality

rX ·mX = r(mX) · rmX , (1)

where mX : mX → X, is M̃-coreplica of object X, and rX and rmX -R-replicas of respective

objects and equality (1) takes place for a morphism r(mX).

rX · wX = r(mX) · fX (2)

is the pull-back square built on morphisms rX and r(mX). Then

mX = wX · tX , (3)

rmX = fX · tX , (4)

for a morphism tX . We have rX , mX ∈ Mu and from equality (1) it results that r(mX) ·
rmX ∈Mu.

Because class Mu is Epi-cohereditary (see [1]) and rX ∈ Epi, we deduce that

r(mX) ∈Mu. Then in pull-back square (2) it results that wX ∈Mu, and from equality (3)

we deduce that wX ∈ Eu. So in equality (3) all morphisms belong to the class Eu ∩Mu. As

mentioned above (see [3]) fX is the R-replica of object wX, and r(mX) = r(wX). So square
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(2) is pull-back, and wX ∈ Mu. According to the Theorem 7.3 [4] wX ∈ I ′′(R). Further,

tX is un epi. Then from equality (4) results that tX ∈ εR. Because P ′′(R) = (εR) ◦ Ep we

deduce that tX ∈ P ′′(R). So we get that (3) is (P ′′, I ′′)-factoring morphism mX , and the

coreflective subcategory W = M̃ ∗s R is equal to the subcategory M. 2

COROLLARY 1. 1. Class A(M̃) of elements in K(Mu) R-equivalents with element M̃
possesses the biggest element M = M̃ ∗s R, and

A(M̃) = {K ∈ K(Mu)|M̃ ⊂ K ⊂ (M∗s R)}.

2. Because C2V ∗sR = C2V the class of elements R-echivalents with C2V contains one single

element C2V . 2

From the previous results, we have the following presentation of the latice K(Mu)

and the classes of R-equivalence.

.

C V
2.

=W

K

M

K*   Rs

A(   )

.
M= M*  Rs

R K(       )
muM

K(I )
//

.

R

.

R( )P //

R

C V
2

P

.
.

.

.
.

.
.

.

Let’s highlight how the application ∗sR works on the class K(Mu).

Let R ∈ R be. This reflective subcategory generating the factorization structure

(P ′′, I ′′) = (P ′′(R), I ′′(R)). Respectively, this structure divides the lattice K of nonzero

coreflective subcategories into three classes:

K−K(P ′′), K(I ′′), K(P ′′, I ′′).
Remark 1. 1. Always K(I ′′(R)) ⊂ {T ∈ K|M̄ ⊂ T }. But these classes may be different.

2. R(P ′′(R)) = {H ∈ R|R ⊂ H}.
3. Let T , T1 ∈ R(Mu), T ⊂ T1 ⊂ T ∗s R be. Tnen T ∗s R = T1 ∗s R (see[3]).

THEOREM 5. Let R be a reflective subcategory of category C2V, and

(P ′′, I ′′) = (P ′′(R), I ′′(R)). Then:

1. K ∗s R ∈ K(I ′′)⇔ K ∈ K(Mu).

2. K ∗s R = K ⇔ K ∈ K(I ′′).
3. For any K ∈ A(M̃) and all T ∈ R(I ′′) it takes place equality K ∗s T = M̃ ∗sR.2

Let R1 ⊂ R2 be two elements of the lattice R. Then I ′′(R1) ⊂ I ′′(R2), and

P ′′(R2) ⊂ P ′′(R1). There is the following relationship between these classes.
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K(   )
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_
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THEOREM 6. Let K ∈ K, R ∈ R and εR ⊂ µK be. Then:

1. S ⊂ R.

2. The functor w : C2V → K ∗s R is an reflector functor.

3. The functors w : C2V → K ∗s R and r : C2V → R commute: w · r = r · w.

Proof. 1. Because µK ⊂ Eu it results that εR ⊂ Eu, The conditions εR ⊂ Eu and

S ⊂ R are equivalents.

2. It results from Theorem 2.

3. We examine the Diagram (PS) for subcategory (K,R) (see the Diagram from

Lemma 2). We have rwX = rkX. Further, krX = kX, since εR ⊂ µK. Because rrX = 1,

it follows that f rX = 1, or wrX = 1. Therefore wrX = rkrX = rkX. 2

COROLLARY 2. Either the subcategory R is Eu-reflective (S ⊂ R). Then the coreflector

functor m : C2V −→M and the reflector r : C2V −→ R commute: m · r = r ·m. 2

Analogue takes place transformation of the class R(Eu) (class of Eu-reflective subcat-

egories) by the right product.

Example 1. We denote R(S) = {L ∈ R|L ⊂ S. Let L ∈ R(S)} be. Then

1. I ′′(L) ⊂ I ′′(S) =Mp.

2. K(I ′′(L)) = {C2V}. K(P ′′(L)) = K. K(P ′′, I ′′) = {C2V}

C  V

0

2

.

.

P

Г
..

R( )E

R(S )

Mu R( )M
mp

R

S

C  V
2

K( )I

.

.

S

K

M
K( )M

mu

.

.

K( )P

.

//

//

M

_

Example 2. Let R ∈ R(Mp) be. Then P ′′(R) = (εR) ◦ Ep, where (εR) ⊂ Mp, and

K(P ′′(R)) = K(Ep).
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Class K(Ep) contains the element C2V and with each element contains the bigger

elements of the lattice K.

Problem. The class K(Ep) contains other elements, except the element {C2V}?
LEMMA 6. Let R ∈ R(Mp) be (Γ0 ⊂ R). Then (εR) ⊥ (Eu ∩Mu).2

COROLLARY 3. Let R ∈ R(Mp) be. Then K(I ′′(R)) = {C2V}.2
PROPOSITION 2. Let K ⊂ M̃ and K 6= M̃ be. Then K ∈ K(P , I).

kX mX X- -
vXc mX

Proof. Let mX : mX → X be the M̃-coreplica of X, and vXc : kX → mX K-coreplica of

mX. There exist an object X so that vXc is not isomorphism. So mX · vXc does not belong

to the class Mu and mX · vXc does not belong to the class Ep, because mX would be an

isomorphism.2

Example 3. Let L ∈ R\(R(S) ∪ R(Mp)) be, and P ′′(L) = (εL) ◦ Ep. So P ′′(L) intersects

withMu: P ′′(L)∩Mu = εL. So here it results that K(P ′′(L))∩K(Mu) may contain other

elements except the element C2V .
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