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Abstract 

 

The twofold degenerate Anderson impurity model [14] is investigated in normal and 

superconducting states, and the strong electronic correlations of d-electrons of impurity ion are 

taken into account by elaborating a suitable diagram technique. We discuss the properties of the 

SlaterKanamori model [24] of d-impurity electrons. After finding the eigenfunctions and 

eigenvalues of all 16 local states, we determine the local one-particle propagator. Then we 

construct the perturbation theory around the atomic limit of the impurity ion and obtain the 

Dyson type equations between impurity electron propagators and normal and anomalous 

correlation functions. By summing infinite series of ladder diagrams, the approximation for 

correlation functions is established. The criterion for appearance of a superconducting state of the 

model is discussed.  

1. Introduction 

 

The theory of strongly correlated electron systems plays a central role in contemporary 

condensed matter physics. The essence of the problem is the competition between the localization 

tendency originated by the Coulomb repulsion of d electrons and itinerancy tendency arising 

from the hybridization of electron orbitals. 

The orbital degeneracy can be completely eliminated in solid substances, but in many of 

them, for example, new superconductors based on Fe and 
60AnC  materials, orbital degeneracy is 

not completely eliminated and orbital effects are important. 

Many materials with open d- or f- shells exhibit metal-insulator transitions of 

MottHubbard type due to strong electronelectron correlations. 

Major progress in understanding the physics of the MottHubbard metalinsulator 

transition has been achieved in the last decade through the development of the dynamical mean-

field theory (DMFT) [5]. In the last-mentioned paper, the study of Mott-Hubbard transition is 

realized within the DMFT at T = 0 using Wilson’s Numerical Renormalization Group. 

The role of the Hund’s rule coupling HI  has been investigated in models of magnetic 

impurities and quantum dots [6]. This has lead to different predictions for the behavior of the 

Kondo temperature in these systems as a function of HI . This issue is investigated by applying a 

combination of numerical renormalization group (NRG) and renormalized perturbation theory 

(RPT) to some of different models. 
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In [7, 8] the phase diagram of the Anderson impurity model (AIM) has been studied by 

employing the Wilson’s NRG method. It has been shown that the physical behavior in the 

vicinity of the nontrivial fixed point of the AIM resembles that of the two-impurity Kondo model. 

This fixed point is reached in the immediate vicinity of the metal-to-insulator transition upon 

variation of the Hund parameter. 

It is well known that orbital degeneracy plays an essential role in the Mott metalinsulator 

transition. In the present work, we study the role of Hund rule coupling in the orbital degenerate 

model using a diagrammatic approach and taking into account the intra-atomic Coulomb 

interactions of two electrons with opposite spins occupying the same or different orbitals on 

equal footing with the intra-atomic exchange. 

The investigation is based on the diagram theory for strongly correlated electron systems 

we have earlier developed for the non-degenerated [917] and twofold degenerate [18] models. 

Our approximation includes only local self-energy terms. It is well known that such 

approximation is well justified for a large coordination number. The nonlocal [19] terms 

neglected here correspond to higher order approximation in inverse coordination number.  

The paper has the following structure. In Section 1 we describe the twofold degenerate 

Anderson impurity model. The local properties of the model are considered in Section 2. The 

perturbation theory around the atomic limit of impurity ion is formulated in Section 3. In this 

section, we discuss the process of delocalization and renormalization of the dynamical quantities. 

In Section 4 the simplest irreducible Green’s function is calculated. In Section 5 the analysis of 

the main equations is discussed. In Section 6 the main equations for the superconducting state are 

formulated and necessary approximations are elaborated. The correlation functions Y ,Y  is 

determined in both cases when triplet or singlet superconductivity is realized. In Section 7 the 

conditions that determine the critical temperature are analyzed, and the last Section 8 contains the 

conclusions. 

The Hamiltonian of the two-fold degenerate AIM includes two components: conduction 

electrons and strongly correlated localized electrons on one side and the term describing their 

hybridization on the other side [14]: 

             0
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where the local Hamiltonian L

dH  is standard in the SlaterKanamori [24] form, 
kl

C


is  the 

conduction electron annihilation operator with momentum k , orbital number l = 1, 2 and spin 

 σ =±1(↑,↓), ld   operator for localized d electron. Conduction electron of l−th orbital state 
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hybridizes only with the local electron of the same orbital state, 
l l ln d d  

 , 
l ln n



 , 
kl

V is 

matrix element of hybridization. U is the Coulomb repulsion between the d-electrons in the same 

orbital state; U  , between electrons in different orbital states. 
HI  is the Hund’s rule coupling 

constant and pair hopping terms, ( )l k is the band dispersion and d  is the impurity ion energy 

evaluated from the chemical potential μ. N is the number of lattice sites. 

In the following, we assume that the symmetry of the system is such that there exists the 

relation [20]: 

 2 HU U I   , .H HI I                                        (6) 

The Coulomb interactions are far too large to be treated as perturbation and they must be 

included in 0H  - zero order Hamiltonian. The hybridization term (5) is considered as the 

perturbation of the system. In the following, the main ideas of the perturbation theory elaborated 

for non-degenerate strongly correlated systems are extended to the case of orbital degeneracy. 

This generalization has been discussed, e.g., for the twofold degenerate Hubbard model [14]. As 

is known, the new elements of this perturbation theory of strongly correlated systems are the 

irreducible correlation functions which contain all charge, spin, and pairing quantum fluctuations.  

 

2. Local properties 
 

In the main approximation of the Anderson model, one has free conduction and strongly 

interacting localized electrons described by the Hamiltonian 0H . The localized part of the 

Hamiltonian, LH 0
, can be diagonalized by using Hubbard transfer operators χ

mn
=|m〉〈n| where 

|m〉 is the eigenvector of operator L

dH  [9]. 

Because orbital quantum number takes two values l = 1, 2, the total number of local 

quantum states is 16. 

There are the following eigenvectors of operator L

dH . The first quantum state |1〉 is the 

vacuum state |0〉 with energy E
1

=0. There are four one-particle states with spin 
2

1
S  and 

2

1
zS : 

02|
1
 


d , 03|

2
 


d , 04|

1
 


d  and 05|

2
 


d . The energies of all these states are 

dEEEE  5432 . 

Then there are six states with two particles. Three of them are singlet states with spin S=0 and 

others 3 triplet states with S=1 and 1,0,1zS , 
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The eigenvalues of these quantum states are 

Hd IUE  26 , Hd IUE  27 ,  
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Hd IUE  28
, 

Hd IUEEE  211109
. 

Then there are four states composed from three particles 

0|12|
211












 ddd , 0|13|

122












 ddd ,  

0|14|
211












 ddd , 

2 2 1
|15 | 0d d d  

  
  

with energy value
12 13 14 15 3 2d HE E E E U U I         . 

The last local state is singlet 

1 1 2 2
|16 | 0d d d d   

   
  with energy value 

16 4 2 4 2d HE U U I      . 

When equalities (6) take place we obtain more simple forms: 

6 8 2 d HE E U I    , 
7 2 d HE U I   , 

9 2 3d HE U I   , 
12 3 3 5d HE U I   , 

16 4 6 10d HE U I   . 

The triplet states | 9 , |10  and |11  are the lowest in energy. 

Quantum states enumerated above permit us to organize Hubbard transfer operators mn  

and establish the relation with fermions’ impurity operators [14]:     

2 ,1 1 6,2 7,2 8,5 1 10,5

12 ,8 1 12 ,10 15 ,6 15 ,7
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( 1) ( 1)
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            (7) 

Equation (7) allows calculating all the local dynamical quantities. For example, quantum electron 
number has the form:  

         

2 ,2 6,6 1 6,7 1 7,6 7,7

8,8 1 8,10 1 10,8 10,10 10 ,10

12 ,12 12 ,12 15 ,15 16,16
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( 1) ( 1)
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( 1) ( 1)
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l l
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n  



 

     

    

      

   

     

   

           

        

        

   

                     (8) 

  and  

1 ,1 3 ,3 1 8,10 10,8 9,9 11,11 14 ,14 16 ,16( 1) .l l l l l l l l l

l l
n n                

 
             (9) 

For τ dependent quantity 0 0( )
H H

A e Ae
  

 , we have the equation 

8 10 10 8( ) ( )1 ,1 3 ,3 1 8,10 10,8

9,9 11,11 14 ,14 16 ,16

( ) ( ) ( 1)

.

E E E El l l l l

l l

l l l l

n n e e
      

   

     

 

   

       

   
               (10) 

The correlation between quantities with different orbital numbers is determined by the equation  

(l = 1, 2):  

 
108 10 8

1 ,1 3 ,3 14 ,14 16 ,16

( )( )8,8 10,10 9,9 11,11

( ( ) ( ))( (0) (0))

( 1) ,

l l l l l l l l
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E EE El l
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       (11) 
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 92 12

0

4
( ( ) ( ))( (0) (0)) 2

EE E

l l l l
ll

n n n n e e e
Z

    

    


                            (12) 

In special case 1l  , 2l  , we have 

108 10 8
( )( )8,8 10,10 9,9 11,11

1 1 2 2
( ( ) ( ))( (0) (0)) ,

E EE E
n n n n e e

     


   
       
 

     (13) 

which is the d electron susceptibility [24]. 

We now define the Matsubara one-particle Green’s function of localized d-electrons: 

0 0

, 0
( , ) ( ) ( ) ( ) ,l l l ll l Td d            

       g g                             (14) 

where 
0 0( )

H H

l ld e d e
 

   , 0 0( )
H H

l ld e d e
 

  
  . 

 

The Fourier components of this Green’s function are 

 0 0

1
( ) ( ).n

n

i

ne i
 



 



 g g                                                   (15) 

Using (8) and the properties of Hubbard operators we obtain the equation for local function:   
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                (16) 

 

where 0Z  is partition function in atomic limit  

 6 7 9 161 2 12

0 4 2 3 4 .
E E E EE E EZ e e e e e e e

                       (17) 

 

The spectral function of impurity d-electron in local approximation is as follows:  

 (0) 0( ) 2Im ( )A E E i  g                                                  (18) 

where 
0(E i g  with δ=+0 is the analytical continuation of the Matsubara to retarded Green’s 

function. 

Using (14) we obtain  
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with property  

(0)( ) 2 .A E dE 



                                  (20) 

 

3. Delocalization processes 

 

We use the perturbation theory elaborated previously for strongly correlated electron 

systems both of non degenerate [913, 1518] and of degenerate forms [14]. We study the 

process of renormalization of Green’s function resulting from intra- and inter-orbital flips of 

tunneling electrons. 

The full Matsubara Green’s function in the interaction representation for conduction and 

impurity electrons are 

  
0

0

( | ) ( ) ( ) ( ) ,
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 The anomalous functions are defined as 
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                               (22) 

Here τ and    stand for imaginary time with 0≤τ≤β, β is the inverse temperature, T is the 

chronological ordering operator. 

The evolution operator is  

 int

0

( ) exp( ( ) ).U T H d



                                            (23) 

The statistical averaging is carried out in (21) and (22) with respect to the zero-order 

density matrix of the conduction and impurity electrons. Index c means connected diagrams. 

In the zero order approximation we have  

16

0

1

L nn

n

n

H E 


 , 
16
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1,nn

n
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(0) (0)( | ) ( | ),l l ll lkk
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, 
(2 1)

n
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 ,                        

and (0) ( ni g  is determined by equation (16). 

Hybridization between the conduction and d impurity electrons results in renormalization 

of their propagators. Because the number of conduction electrons N is much larger than the single 

impurity state, the effect of the latter on the conduction band scales as 
1

N
. 

The renormalized conduction electron propagator is  

(0)

*

(0) (0)

( | ) ( | )

( | ) ( ) ( | ),

l l n ll l nkk

kl k l
l n l l n l n

G kk i G k i

V V
G k i i G k i

N

   

   

    

  

   

 
   

 

 g
                                            (25) 

where ( )l l ni   g  is the full impurity electron propagator. 

A similar equation holds for the anomalous function of conduction electrons in 

superconducting state:  

 

*

(0) (0)( , | ) ( | ) ( ) ( | ).kl k l
l l n l n l l n l n

V V
F k k i G k i f i G k i

N
         
     

                            

The equations for the full functions g  and f of impurity electrons have the diagrammatical form 

shown in Fig.1.  

The structure representative of the diagrams in Fig. 1 is given by the following equation 

 

1 1 2 2

1 1 2 2 1 1 1 2 1 21 1

1 2 1

1 2 1 2 1 1

*
2

0 (0)

1 2 1

(0)

1
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l l n l n l lk l
k k k

l l l n

V V
G k k i V G k i

N N

i

    

  

   

  





 

G

                  (26) 

where  

2
2(0) (0)

| |1 1
( ) ( | ) .

( )

kl
l n l nkl

k k n

V
i V G k i

N N i k
  

 
 


 G                                (27) 

The renormalization quantity is  

                  

*1
( ) ( | ).l l n l l nkl k l

kk

i V V G kk i
N

        


 G                        (28) 

In Fig. 1, the double dashed lines with arrows depict renormalized g  and f propagators of 

localized electrons and solid thin lines represent 0G  function of conduction electrons. The 

function 1V  means 
1 1k l

V  and summation by repeated indices is assumed. 

Λ and Y  are correlation functions. They contain a sum of strongly connected irreducible 

diagrams. The simplest examples of these diagrams are shown in Fig. 2.  
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Fig. 1. Dyson type equation for Green’s function of impurity electrons. Λ, Y, Y  are 
correlation functions. 

  

Fig. 2. Simplest examples of correlation functions Λ and Y . 

The analytical form of equations in Fig.1 is the following:  

1 1 1 1 1 1

1 1 1 1 1 1

(0)

(0)

( ) ( ) ( ) ( )

( ) ( ) ( ),

l l n l l n l l n l n l l n
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Y i i f i

        

    

    

  

     

 

     

 

g gG

G
                           (29) 

1 1 1 1 1 1

1 1 1 1 1 1

(0)
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( ) ( ) ( ) ( )

( ) ( ) ( ).

l l n l l n l l n l n l l n

l l n l n l l n

f i Y i i i f i

Y i i i

        

    

    

  

     

 

      



G

G g
 

This system of equations is rather general and admits different phases. We shall discuss one of 

the most simple forms with singlet superconductivity on the paramagnetic background.  



V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, and I. D Cebotari 
 

207 

For this special case, we use the new notations ( )   :  

( ),ll

l l n ni i     


    g g   ( ),ll

l l n nf i f i     


      

   ( ),ll

l l n ni i     


        ( ),ll

l l n nY i Y i     


                                 (30)                                                 

(0) (0) ( ).l

l n ni i    g g  

With these definitions, we obtain:  

1 1 1 1 1(0) (0)( ) ( ) ( ) ( ) ( ) ( ) ( ),l l l ll l l lll ll ll

n n n n n n n ni i i i i Y i i f i                 
      g gG G  

1 1 1 1 1 1(0) (0)( ) ( ) ( ) ( ) ( ) ( ) ( ).l l l l l ll l l lll ll

n n n n n n n nf i Y i i i f i Y i i i                
      G G g     (31) 

In the absence of orbital degeneracy, this system of equation has the known solution [18]:  
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Solutions of equation (31) for the normal state of the degenerate system have the form:  

11 2(0) 11 22 12 21

11
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,
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n n n n n n

n
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i i i i i i
i
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21

21 ( )
,
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  g , 

  1(0) 11 2(0) 22

1(0) 2(0) 12 21

( ) 1 ( ) ( ) 1 ( ) ( )

( ) ( ) ( ) ( ).

n n n n n

n n n n

d i i i i i

i i i i

    

   

    

   

    

 

G G

-G G
      (33) 

 

The other two functions are obtained by changing the indexes 1 2 . These equations are 

of Dyson type. They determine Green’s functions through correlation functions 
(0)  g , Y 

and Y  ones. The last three can only be given in a form of infinite diagram series, since an exact 

solution does not exist. 

An example of efficient summation of diagram and determination of the correlation 

functions Z, Y and Y  is presented in Fig. 3. 

The diagrams of Fig. 3 differ from the ones of Fig. 2 by the presence of the full conduction 

electron Green’s function instead of the bare one of Fig. 2. This difference is the result of ladder 

summation of main diagrams.  
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Fig. 3. The main approximation for the correlation functions. The solid double lines with arrows depict the 

full Green’s functions of conduction electrons. The rectangles depict the irreducible Green’s functions of 
the impurity electrons. 

 

4. Correlation functions 

 

The main approximation is based on calculation of simplest normal and anomalous 

correlation functions in order to establish its dependence on spin and orbital quantum numbers. 

The simplest correlation function is determined as  

(0) (0) (0) (0) (0)

2 2 1 1 1 1[1,2 | 3,4] (1,2 | 3,4) (1| 4) (2 | 3) (1| 3) (2 | 4),irrG   g g g g g , 

    
(0)

2 1 2 3 4 0
(1,2 | 3,4) ,Td d d dg  

(0)

1 1 4 0
(1| 4) ,Td d g  1 1 11 ( , , )l   ,              (34) 

with two- and one-particle bare Green’s functions of localized electrons. 

Owing to the presence of Coulomb interaction terms in zero order Hamiltonian, the r.h.s. 

of equation (34) does not vanish and contains charge, spin, and pairing fluctuations. 

The two-particle Green’s function (0)

2g  is the sum of 4! terms of different time ordered 

electron operators products. The statistical averages of these quantities are calculated by using 

Hubbard transfer operator’s representation. 

We need the Fourier representation of these functions   
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There exists the law of frequency conservation  
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              (37) 

The statistical averages of chronologically ordered products of the electron operators of 

the function (0)

2g  have different weights of the form 
0

nE
e

Z



, where 
nE  are the energies 

determined in the previous section. Because 9E  is the lowest in energy, its weight ne
 

 is 

dominant over the others and therefore only these terms are taken into account. 

Motivated by these arguments, we use the approximate value (35) instead of initial exact 

equation (16) for zero order Green’s function (0)

l l  g . Zero order partition function 0Z  (17) is 

approximated as 3e
  

. 

For example, the contribution to function (0)
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order               and with weight e
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1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 4

(2)

3 ,0 3 ,0 1 4 , , 1324

1 1
( ( 1) )( )

4 2

l l

l l l l l l l l I                   

                (38) 

1 4

1 3 2 4 1 3 2 4 1 3 2 4 1 4

(3)

3 ,0 3 ,0 1 4 , , 1324

1 1
( 1) )( ) ,

4 2

l l

l l l l I                 

         

where  

31 29

9 12 1 2 3 4 1 1 2 2 3 3 4 4( )( )(1)

1 3 2 41324 0
0 0 0 0

,
E

E E i i i ie
I d d d d e e

Z
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31 29

9 12 1 4 6 12 2 3 1 1 2 2 3 3 4 4( )( ) ( )( )(2)

1 3 2 41324 0
0 0 0 0

,
E

E E E E i i i ie
I d d d d e e

Z

 


             


       
               (39) 

31 29

9 12 1 4 7 12 2 3 1 1 2 2 3 3 4 4( )( ) ( )( )(3)

1 3 2 41324 0
0 0 0 0

.
E

E E E E i i i ie
I d d d d e e

Z

 


             


       
         (39)  

These fourfold multiple integrals by time variable τ can be transformed in contour integral 

by using the method of Claude Bloch [21]. With this purpose, it is necessary to introduce the 

exponential form  

 1 0 1 3 1 3 2 2 2 4 3 3 4( ) ( ) ( ) ( ) ( 0)
,

E E E E E
e

                
,                                    (40) 

which must be compared with the exponential form of our integrals ( )

1324

nI . Comparison with (1)

1324
I  

give us the result  

0 9E E  , 
2 9 1 3E E i i     , 

4 9E E i    , 
1 12 1E E i   , 

3 12 1 2 3E E i i i       ,   
1 2 3 4                                    (41) 

  

Our integral (1)

1324
I  is transformed in the contour integral  

 (1)

0 0 1 2 3 4

1 1
,

2 ( )( )( )( )( )

z

C

dze
I

i Z z E z E z E z E z E



 




                                  (42) 

where contour C
 surrounds the real axis in the positive direction. The integrals (2)I  and (3)I  

have the same form (42) but differ in the definition of energy 
2E . For (2)I  the energy 

2 1E i i       and for (3)I , 
2 7 1E i i     . Other parameters coincide. 

The contour integral (42) is evaluated by the method of residues. The simple results are 

obtained when the parameters 
nE  are different. The existence of multiple poles is possible for the 

special values of frequencies 
n . 

For example, in the case where       and Ω=0, we have 
0 2 4E E E   and the pole 

0z E   is threefold multiple with the residue  

 

0
1 3

1

2 ( )( )

z

z E

e

z E z E





 
 

  
                                                       (43) 

To find all possible multiple poles, we consider different values of frequencies using the 

identity 1=δ(ω)+ψ(ω), where ψ(ω)=1−δ(ω). For example, we consider the possibility when Ω can 
be equal to zero and ω

1
=ω

3
. We have the identity  

1 3 1 3

1 3 1 3 1 3 1 3

1 ( ( ) ( ))( ( ) ( ))

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

       

               

      

           
         (44)     
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The first term in the right-hand part of this equation admits the existence of a triple pole; the next 

two terms admit double poles, and last term admits double and single poles. 

We shall take into account these residues, statistical weights of which is 
0

0

Z
e

Z



, and shall 

omit the other ones. In this approximation, we have  

  

0

0 2

0

(1)

0 1 31324

1 3

1 3 2

1 2 3 0 1 3

1 3

1 3 4

1
( ) ( )

2 ( )( )

( ) ( )
( )( )( ) ( ) ( )( )

( ) ( )
( )( )( ) (

Z

z E

Z Z

z E z E

Z Z

z E

e
Z I

z E z E

e e

z E z E z E z E z E z E

e e

z E z E z E z



 

 

   

   

   





 

 

 



 
    

  

     
       
         
 

 
    

    
4

2

0

0

2

0 1 3

1 3 2 4

0 1 3

1 3 2 42

2 1 3

1 2 3 4

) ( )( )

( ) ( ) ( )
( )( )( )

( ) ( ) ( )
( ) ( )( )

( )( )( )( )

z E

Z

z E

Z

z E

Z

z E

E z E z E

e

z E z E z E

e

z E z E z E

e

z E z E z E z E







      

      















  
 

 
   
 

  
     
    


 
      
   


  
  

    
2

4

0 1 3 4

0 1 2 3

( )( )( )( )

.
( )( )( )( )

Z

z E

Z

z E

e

z E z E z E z E

e

z E z E z E z E













 


 
     


 
  
    


        (45) 

The contribution of other poles is negligible. Our next approximation consists in 

preserving, in the case of a low temperature, of the main part of the second derivative (43) just of 

the form  

92

0 1 0 3 02 ( )( )

E
e

I
Z E E E E

 

 
 

                                         (46) 

This contribution, together with contribution (36) of the product of one-particle Green’s 

functions, determines the main part of the correlation function. This part is designed as (0)

2

irrG . 

After some transformation and summation of different contributions, we obtain the main 

approximation for the correlation function:  
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1 4 2 3 1 4 2 3 2 4 1 3 1 4 2 3 1 4 2 3 3, 1

1 3 2 4 1 3 2 4 2 3 1 3 2 4

(0)

2 1 1 1 2 2 2 3 3 3 4 4 4 1 2 3 4 1 2

1 4 , ,

1 3 , ,

[ ; | ; ] ( ) ( ) ( )
6

( ( ) [2 ]

( ) [2

irr

l l l l

l l l l

G l i l i l i l i p i p i

                 

         


              

             

         

  

 

    

   

  
1 4 1 3 2 4 4, 1

]),           

        (47)    

with  

 
2 9 9 12

1 1
( )p i

i E E i E E


 

 
  

    
                                           (48) 

5. Analysis of the main equations 

 

As noted above, one example of efficient summation of diagrams which determine correlation 

function Z and Λ is presented in Fig. 4. It has the form  

  

Fig. 4. The main equation for the function Λ(x|x
'
). Here x is (l,σ,iω). The thin dashed line 

represents the bare local one-particle Green’s function and the double dashed the 
renormalized one. The thin solid line represents the conduction propagator. 

First of all, we shall discuss the approximation with zero order correlation function (0)

2

irrG  

Using the result (47), we obtain  

1 1

1 1 1

(0) (0) 2 (0)

2 1 1 1 1 1 1 1

1 1
[ ; | ; ] ( ) [ ( )] ( ),

2

irr

l ll l

l

G l i l i l i l i i p i i  

 

            


 
    G G      (49) 



2 2 2 2 1 1 1 1

1 1 2 2

1

1

1 1 1 1 1 1 1

(0) (0) (0)

2 1 1 1 2 2 1 1 1 1

(0)

1 , 1

(0) (0) (0)

, 1 , 1 1 1

[ ; | ; ] ( ) ( ) ( )

1
( ) ( ) ( ) (2 ( )

6

( ) ( ) ( ) ( )

irr

l l l l

l l

ll l

l

l l l l l l l

G l i l i l i l i i i i

p i p i i

i i i i

   

 

  

       

          

       

    

  

 

 

 

 





G G

G G G

g

g

g g

1 1 1

1

1

(0) (0)

, 1 , , 1 , 1

(0) (0)

1 , 1 , , 1 , 1

(0) (0) (0) (0)

1 1 1 , 1 1 1

( )

( ) ( ) ( ))

( )[2 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )]}.

l l l l

l l l l

l l l l l l l l

i

i i i

i i i

i i i i i i

    

    

          



   

      

       

    

     

       



 

 

G G

G G

G G G G

g

g

g g

                       (50) 

We keep the terms that preserve the spin and have the form   and omit the terms with spin-flip 
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of the form 
,   

 and also omit the terms that are reciprocally subtracted and differ only by the 

sign of spin. We take into account that the function (0)( )l iG  does not depend on spin index and  

1

1

(0)

1 ( ) 0.l i



    G                                                                   (51) 

As a result of these simplifications, we obtain  

2 2 2 2 1 1 1 1

1 1 2 2

(0) (0) (0)

2 1 1 1 2 2 2 1 1 1

(0) (0)

1 1 1 1 1

[ ; | ; ] ( ) ( ) ( )

1
( ) ( ) ( ) ( ) ( ) ( ),

2

irr

l l l l

l l

l l l l

G l i l i l i l i i i i

p i p i i i i

   

 

    

          

          

 

  

 G G

G G

g

g

        (52) 

2 2
(0) (0) (0)( ) ( )

( ) [ ( ) ( )] ( ) ( ) ( )
2 2

l l ll l l l l l l

p i p i
i m i i i i i    

 
                G G G g ,           (53) 

with the following realizations  

 

2 2
(0) (0) 2

11 1 1 1 11

2 2
(0) (0) 2

22 2 2 2 22

2
(0) (0)

12 1 2 12

( ) ( )
( ) ( ) ( ) [ ( )] ( ),

2 2

( ) ( )
( ) ( ) ( ) [ ( )] ( ),

2 2

( )
( ) ( ) ( ) ( ),

2

p i p i
i m i i i i

p i p i
i m i i i i

p i
i i i i

 
    

 
    


   

   

   

 

G  G

G  G

 G  G

g

g

g

                (54)  

We take into account the Dyson type equation  

(0)

11 2 11 22 12 21
11

( ) ( )( ( ) ( ) ( ) ( ))
( )

( )

i i i i i i
i

d i

     




     
g

G
,  12

12

( )
( )

( )

i
i

d i







g  , 

(0) (0) (0) (0)

11 1 22 2 1 2 12 21( ) (1 ( ) ( ))(1 ( ) ( )) ( ) ( ) ( ) ( )).d i i i i i i i i i             G G G G .       (55) 

We make some generalization by considering function m(iω) dependent on orbital quantum 

number l even if it is really not. The function 
22g  is obtained from equation (55) by changing 

indices 1 and 2. 

We have found two solutions of equations (54) and (55). 

The first of them is  

11 1( ) ( )i m i   ,  
11 (0)

1

1
( )

( )
i

i



 g

G
, 

22 (0)

2

1
( )

( )
i

i



 

G
,  

(0)

2 2
22 2(0)

(0) 22
2

( ) ( ) 11
( ) 1 ,

( )( )
( ( ))

2

m i i
i

p ii
i

 





 
 

   
 
 
 

g
G

G
G

          (56) 

12 21

( )
( ) ( )

2

ip i
i i


      , 

12 (0) (0)

1 2

2
( ) ,

( ) ( ) ( )

i
i

p i i i


  
 g

G G
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with the condition that  

 
1 2(0) (0)

1 2

1 1
( ) ( )

( ) ( )
m m

i i
 

 
  

G G
.                                (57) 

The second solution is obtained from (56) by changing indices 1 and 2. 

The analytical continuation of obtained solutions in upper half-plane gives us the 

possibility to determine spectral function of localized electrons: 

 ( ) 2Im ( )ll llE E i    g                                          (58) 

For example, the intra-orbital contribution has the form 

  
(0)

1
11 (0) 2 (0) 2

1 1

2Im ( )
( )

Re( ) Im( )

E i
E





 



G

G G
,                                    (59) 

where  

 (0) 2

1 0 1Im ( ) ( ) | |E i E V   G    (60) 

The quantity 
11( )E  differs from zero owing to the existence of the matrix element of 

hybridization and of the zero order density of states 
0 ( )E . This intra-orbital contribution to the 

impurity states transferred to the Fermi level due to hybridization with band electrons is a direct 

extension of the result known for the single orbital model. 

However, there exists an additional contribution to this transfer caused by inter-orbital 

correlation effect, which follows from our solution: 

 1 2
12 12 (0) (0)

1 2 1 2

2( )( )
( ) Im ( ) ,

Im (0) Im (0)( )

E E E E
E E i

E E
 

   
   

  
g

G G
         (61) 

where  

 
1 2 9 0E E E    , 

2 12 9 0E E E    . 

 This quantity is positive for 1 2E E E    . 

Thus, for these energy values, the inter-orbital excitations give a positive contribution to the 
metallic state. 

6. Superconducting state 

 

We shall discuss now the generalization of our previous theory for the case of 

superconductivity. 

Because the orbital quantum number l takes, in our model, two values l = 1, 2, we can 

rewrite equation (31) in the form 
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11 11 11 (0) 11 12 (0) 21

1 2

11 (0) 11 12 (0) 21
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21 21 21 (0) 11
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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n n n n n n

n n n n n
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i i i i i

i

     

   

   



       

     

    



    

  

   



g g g
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G G

G

G (0) 21 21 (0) 11

1

22 (0) 21

2

11 11 11 (0) 11 11 (0) 11

1 1

12 (0) 21 21

2
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( ) ( ) ( ) (
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i i Y i i f i

Y i i f i

f i Y i Y i i i i f i

Y i i i i

  

 

     

  

    

  

      

   

  



     

 

g

g

g

G

G

G G

G (0) 21

2

21 21 21 (0) 11 12 (0) 11

1 1

22 (0) 21 22 (0) 21

2 2

) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ).

n n

n n n n n n n n

n n n n n n

i f i

f i Y i Y i i i i i f i

Y i i i i i f i



     

   

 

       

     



     

  

g

g

G

G G

G G

          (62) 

Here '( )ll

ni  , ' ( )ll

nY i   and 
'

( )
ll

nY i   are the correlation functions of superconducting state and 

( )ll

ni g  and ( )ll

nf i   are the full normal and anomalous one-particle Green’s functions. 

The other system of four equations for quantities 12 ,g
22 ,g  ,12

f  and 22

f can be 

formulated. We introduce the definition  

 (0)( ) 1 ( ) ( )l ll l

n n nQ i i i      G                                                   (63) 

and find the determinant of fourth order 
4( nD i  :  

1 12 (0) 11 (0) 12 (0)

2 1 2

21 (0) 2 21 (0) 22 (0)

1 1 2
4 11 (0) 12 (0) 1

1 2

( ), ( ) ( ) ( ) ( ) ( ) ( )
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Q i i i Y i i Y i i

i i Q i Y i i Y i i
D i

Y i i Y i i Q i
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G G 21 (0)
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21 (0) 22 (0) 12 (0) 2

1 2 1
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( ) ( ) ( ) ( ) ( ) ( ) ( )

n n
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i i

Y i i Y i i i i Q i



   

 

      

  

     

G

G G G

        (64) 

These equations are the Dyson-type equations and they establish the relations between 

propagators g , f and f and correlation functions ,  Y  and Y . Anomalous correlation functions 

have the properties of the order parameters Y  and Y  of the superconducting state.  

The system of equation (62) permits us to obtain for 
cT T  such linear dependences:  

11 11 2 2 12 2 21 (0)
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        (65) 
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where  
4( )ni  is equal to 

4( nD i   with equated to zero the order parameters Y and Y :  

1 2 12 21 (0) (0)

4 1 2

1 2 12 21 (0) (0)

1 2

( ) ( ( ) ( ) ( ) ( ) ( ) ( ))

( ( ) ( ) ( ) ( ) ( ) ( )).

n n n n n n n

n n n n n n

i Q i Q i i i i i

Q i Q i i i i i

   

   

      

     

    

       

G G

G G
                           (66) 

The system of equations (65) is not closed because up till now we have not the dependence of 

the correlation functions Λ,Y and Y  on the electron propagators. 

This dependence can be the result of infinite summation of the diagrams and certainly is a 

consequence of some approximations. Our main approximations are depicted in Fig. 3. 

We shall now make our approximation (see Fig. 5), which determines the correlation function 

Y  as a result of summing a class of ladder diagrams, more precise. 

 

Fig. 5. The ladder approximation for Y  correlation function. The double dashed line is the 

full anomalous Green’s function of impurity electrons. The solid thin lines are conduction 
electron Green’s functions. The rectangle depicts the simplest irreducible Green’s function. 

 

The approximation leads to the following analytical result  

 1 1 1 2 2

1 2

1 1 1 2 2 2
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               (67) 

where  
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                   (68)                          
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1 4 , , ,

1 3 , ,

1
[ ; | ; ] ( ) ( )

6

( ( ) [2 ]
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irr

l l l l

l l l l

G l i l i l i l i p i p i

                 

              

         

             

            

  

 

 

   

  
4 4 1, ]).   

            (69) 

By using the anti-symmetry property which is the consequence of the Pauli principle  

 ( ) ( ),ll l l

n nf i f i   

                                                                (70) 

we can transform the above equation and obtain a more simple one:  
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1
( ) [ ( ) ( ) ( )

6

( ) ( ) ( ) 2 ( ) ( ) ( )],
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n l n l n n
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l n l n n l n l n n

Y i q i q i f i

q i q i f i q i q i f i

    

         

    

       

 

  

 

   

  

   

             (71) 

where  

 (0)( ) ( ).l n l nq p i i   G                                                                                (72) 

As can be seen there are two different possibilities for correlation function Y :  

one diagonal by spin indices  

 
1

( ) ( ) ( ) ( ),
6

ll ll

n l n l n nY i q i q i f i       

                                                           (73) 

and second non diagonal by spin indices 

 

 
1

( ) ( ) ( )(2 ( ) ( )).
6

ll ll ll

n l n l n n nY i q i q i f i f i        
  

                                    (74) 

 

The diagonal solution belongs to the triplet superconductivity; the non diagonal, to the 

singlet case. 

We suppose that, in the last case, the change in the order of the spin indices is 

accompanied by a change in the sign of the function. 

In this way, we obtain  

 
1

( ) ( ) ( ) ( ).
2

ll ll

n l n l n nY i q i q i f i     

                                                 (75) 

Both possibilities can be joined in the form  

 

 ( ) ( ) ( ) ( ),ll ll

n l n l n nY i q i q i f i     

                                                   (76) 

where 
1

2
    for singlet and 

6

1
  for triplet superconductivity. 

7. Critical temperature 
 

Now we come back to the system of linearized equations (65) and substitute the 

propagators llf


  by their values obtained from equation (76). The result of this substitution is the 

following system of linear equations for the components of order parameter llY
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where 
  is equal to (66). 

Determinant 
sD  of this linear system of equations must be zero: 
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(78)  

where nk i . 

This condition determines the free parameter of the theory and, as usual, defines the 

critical temperature cT . In our case, the critical temperature is present in the dependence of the 

Matsubara frequencies on cT : (2 1)n B cn k T   . 

To determine the value of cT , we put λ equal to value 1

2
  which corresponds to the singlet 

state and preserve equation (78). 

The other argument that supports the choice of 1

2
    is the approximation based on the 

equality to zero of the functions ( ) 0l

nQ i   . In this special case, equation (78) is reduced to the 

simple form 

(0)
(0) 2 24
4 2

1 1 2 2

( ) [ 1]
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n n n n

D
q i q i q i q i    
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where )0(

4  is 
  with the condition  ( ) 0l

nQ i   :  

(0) (0) (0) (0) (0) 12 12 21 21

4 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).n n n n n n n ni i i i i i i i                   G G G G  

By taking into account the solutions (56)  

2
12 21 ( )
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p i
i i 


      

and the definition of 
lq , we obtain 

 01
)2(

1
)(

2

2

2)0(

4 










sD ,                                                       (80) 

that is, the condition 1

2
   . 

8. Conclusions 

 

We have constructed the strong-coupling diagram perturbation theory approach for the 

investigation of the twofold degenerate Anderson impurity model. 

First of all, the eigenfunctions and eigenvalues of energy of the localized d-electron part 

of the Hamiltonian have been determined. Their dependence of intra- and inter-orbital Coulomb 

interactions and of Hund rule coupling constant was established. 

The perturbation theory around the atomic limit has been developed, and Matsubara 

Green’s functions in the normal and superconducting states have been defined. 

Dyson-type equations for these functions have been obtained for both states, and their 

analytic solutions have been discussed in detail. 

Since the main elements of our diagram technique are the irreducible Green’s functions, 

we have carried out the calculation of simplest two-particle irreducible Green’s function and 

determined its dependence on the spin and orbital quantum numbers. This quantity, which has 

been found only in the low temperature limit, is approximated by taking into account the 

contributions of statistical weight e
  

, by assuming that the ground state of our system is 

dominated by the two-particle triplet state 9E . 

Having this quantity and summing some class of diagrams, we have obtained the l l    

correlation function. 

We found two solutions for the renormalized Green’s functions of the d-electrons and 

determined the spectral weight. 

We have proved that orbital degeneracy gives an additional contribution to 

“metallization” of the impurity states, i.e., to an enhanced transfer of spectral weight to the Fermi 

level. 

We have obtained an approximate expression for anomalous correlation functions and, in 

particular, for superconducting order parameters. 

We have investigated the linearized equations for order parameters and formulated the 

condition for the realization of singlet superconductivity and determination of the critical 

temperature.  
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