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We investigate the interaction of strongly correlated electrons with acoustical phonons 
in the frame of Hubbard-Holstein model. The electron-phonon interaction and on-site 
Coulomb repulsion are considered to be strong. By using the Lang-Firsov canonical 
transformation this problem has been transformed to the problem of mobile polarons. A new 
diagram technique is used in order to handle the strong Coulomb repulsion of the electrons 
and the existence of phonon clouds surrounding the electrons. The generalized Wick theorems 
for chronological products of electron and phonon-clouds operators have been formulated. 
We have found the collective mode of phonon clouds that surround electrons and discussed 
the physics of the emission and absorption of this mode by the polarons. We have also 
discussed the difference in the behaviour of optical and acoustical phonon-clouds surrounding 
polarons during their movement through the crystal lattice. 
 

The aim of the present paper is to gain further insight into the mutual influence of 
strong on-site Coulomb repulsion and strong electron-phonon interaction using the single-
band Hubbard-Holstein model [1,2] and a recently developed diagram approach [3-5]. 

We consider now the most interesting case as regards superconductivity of coupling  of 
correlated electrons with dispersional acoustical phonons. 
 

The initial Hamiltonian of the correlated electrons coupled to acoustical phonons has 
the form  
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Here )( +
σσ ii aa  annihilation (creation) operators of the electrons at lattice site i and with 

spin у, )( +
kk bb  phonon operators with vector k, ( )ii pq  is the phonon’s coordinate 

(momentum) in site i, which is related with phonon operations by the equations: 
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In this Hamiltonian U and c
jiV , are the on-site and inter-site Coulomb interactions, )( ijt −  is 

two center transfer integral, ( )jig −  is the matrix-element of electron-phonon interaction, 
µεε −= 00  where 0ε  is the local electron energy and м-is the chemical potential of the 

system. The Fourier representation of ( )Rg  will be used as ( )kg . 
 

After applying the Lang-Firsov displacement transformation [6]: 
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we obtain the polaron Hamiltonian. The problem is now to deal properly with the impact of 
electronic correlations on the polaron problem. This can be done best by using the Green's 
functions provided one finds the key to deal with the spin and charge degrees. 
We define the temperature Green's function for the electrons and polarons in the interaction 
representation correspondingly by  
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with operators axaand cxa in interaction representation. 
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0
pH  is equal to the local part of eH  with renormalized parameters U~  and µ~  
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intH  contains two parts: the tunneling of the polarons and direct intersite interaction of 
polarons. The evolution operator is given by  
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   One- phonon zero order Matsubara Green's function has the form: 
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In superconducting state, discussed by us, there are additional anomalous Green’s 
functions for electrons and polarons: 
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Here x denotes position and ф -imaginary time. 

There are two different phonon-cloud propagators given by: 
 

 
( ) ( ) ( )( ) ( ) ( ) ( )( ) 00 exp|;exp| 〉′+〈=′〉′−〈=′Φ ′′ τπτπϕτπτπ xxxx iiTxxiiTxx  

 
The Fourier representation of them is the Lorentzian and Gaussian correspondingly: 
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where  ( ) 0||0 =′−= ττσωch  is the collective frequency of phonon cloud and  
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The analysis of the diagram structure of the thermodynamical perturbation theory 
permits us to formulate the following exact Dyson equations for polaron renormalized 
Green’s functions:  

( ) ( )
( ) ( )[ ]ωε

ω
ω

σσ

σσ
σσ i

i
iG

p

p
p |1

|
|

kk
k

k
Λ−

Λ
=  

( )
( )

( ) ( ) ( ) ( )
|

|
1 | 1 |

p
p

p p

Y i
F i

i i
σ σ

σ σ
σσ σ σ

ω
ω

ε ω ε ω
=

  − Λ − − Λ − −   

k
k

k k k k
 

where  ( ) ( ) ( )ωωω σσσσσ iZiGi ppp || 0 kk +=Λ  
( )ωσσ iZ p |k  and ( )ω

σσ
iY

p
|k  are the correlation functions characteristic of diagram 

technique [3-5]. They take into account all the correlation effects caused by the Coulomb 
interaction and presence of phonon clouds. Here σσ −= . 

In this equation ( )kε  is the bare energy of band electrons equal to the Fourier 
representation of tunneling matrix element. The anomalous quantities pY  and pF  are 
proportional to the anomalous phonon-cloud propagator ϕ  which, in strong coupling limit 
discussed by us, is exponentially small quantity. Therefore we investigate the properties of 
electron propagators in the environment of phonon clouds and obtain the following exact 
Dyson equations [ ]ωik ,k= :  
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Here ( ) ( )kk ee σσσ ΞΣ ,  and complex quantity ( )ke σσΞ  are the exact mass operators of the 
system and in the simplest approximation are equal to the renormalized by phonon clouds 
tunneling matrix elements. The quantities ( )keσΛ  are equal to  

( ) ( ) ( )0
e ek G i Z kσ σ σωΛ = +  

and Zea,  Yeaa and complex quantity σσeY  are characteristic of our diagram technique 
correlation functions. These exact equations for electron functions don’t contain the small 
phonon cloud propagator ϕ  and are the base for the next discussion of the phase transitions. 

The main conclusion is the statement that superconducting pairing is realized easier by 
electrons without phonon clouds, but which move in the environment of such clouds, than by 
polaron loaded by heavy phonon clouds. 
 

References 
 

[1] J. Hubbard, Proc. Roy.Soc. A 276, 233 (1963). 
[2] T. Holstein, Ann. Phys. (N. Y.) 8, 325 (1959). 
[3] M.I. Vladimir and V.A. Moskalenko, Teor. Mat. Fiz. 82, 428, (1990) [Theor.Math.Phys. 

82, 301(1990)]. 
[4] S.I. Vacaru, M.I. Vladimir, and V.A. Moskalenko, Teor. Mat. Fiz. 85, 248 (1990), 

[Theor.Math.Phys. 85, 1185 (1990)]. 
[5] N.N. Bogoliubov, and V.A. Moskalenko, Teor. Mat. Fiz., 86, 16 (1991); Teor. Mat. Fiz., 

92, 182 (1992) [Theor. Math. Phys. 92, 820(1992)]. 
[6] I. G. Lang and Yu. A. Firsov, Zh. Eksp. Teor. Fiz. 16, 1301, (1963). 
 


