
Moldavian Journal of the Physical Sciences, Vol.4, N4, 2005 
 

 395

SPIN DENSITY WAVES AND SUPERCONDUCTIVITY IN STRONGLY 
CORRELATED ELECTRON SYSTEMS 

 

D.F. Digora, L.A. Dohotarub, P. Entelc, V.A. Moskalenkoa,d  and M.I. Vladimirb 
 

aInstitute of Applied Physics, Academy of Sciences of Republic of Moldova, MD-2028, Republic 
of Moldova. 

bTechnical University, Chisinau, MD-2064, Republic of Moldova. 
cInstitute of Physics, University of Duisburg-Essen, Duisburg Campus, 47048 Duisburg, 

Germany. 
dBLTP, Joint Institute for Nuclear Research, 141980 Dubna, Russia 

  
A special diagram technique recently proposed for strongly correlated electron systems is 

used to study the peculiarities of a spin-density-wave (SDW) in competition with 
superconductivity. This method allows to formulate the Dyson equations for the renormalized 
electron propagators of the coexisting phases of SDW antiferromagnetism and superconductivity. 
We find the surprising result that triplet supercondctivity appears provided that we have 
coexistence of singlet superconductivity and SDW antiferromagnetism. 
 

In many investigations of the conditions, in which the superconducting state at the high 
temperatures arises, the exclusive role is given to the strong Coulomb interactions of the 
electrons in the system. The Coulomb interactions can also be the cause of the appearance of the 
spin-density-wave (SDW) state. The aim of the present paper is to investigate the influence of 
this interaction on the competition of the above mentioned states. 

In the case of strongly correlated electrons considered here, the strong on-site electron 
repulsion is (together with the number of electrons per site) the dominant parameter of the theory. 
As an elemental model, which takes this into account, we use the Hubbard Hamiltonian [1] and 
the method of broken symmetry [2] in order to discuss the coexistence of a SDW with spiral 
polarization and superconductivity. 

The Hubbard Hamiltonian has the form: 
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Here  ci   and  +
ic   are the destruction and creation operators of the electrons at site  i  , 

respectively;  µ   is the chemical potential of the system,  ( )t j i−   is the transfer matrix element 

and  U   is on-site Coulomb repulsion.  
In order to take into account from the beginning the static SDW, we use the following unitary 
transformation,  

º 1H H −= Ω Ω  
 with the unitary operator  Ω   defined by  
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 where  z
iS   is the  z  -component of the electron spin operator at site  i . After such a 
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transformation the electron operators  ic σ   and  ?
ic σ   take the form ( 1σ = ±  ):  
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This new ground state is charaсterized by the wave vector  Q  . The new tunneling matrix 
element,  

1( ) ( ) exp ( ) ,
2j i j i j it t iσ σ  − = − ⋅ ⋅ −   

R R R R Q R R  

depends now on the wave vector and on the spin of the tunneling electrons. The Fourier 
transform of this new matrix element is equal to  

1( ) ( ),
2

e eσ σ= +k k Q  

where  ( )e k   is the Fourier transform of the initial matrix element. This unitary transformation 
rotates the transversal components of the electron spin operator:  
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In this paper we discuss the properties of a SDW having one of the two spiral polarizations. 
Therefore, in order to obtain non zero values of thermodynamical averages of the transverse 
components of the spin operator, it is necessary to break the spin conservation law of the initial 
Hamiltonian. This is realized by adding to the Hamiltonian a source term for the formation of the 
SDW. In our case this term corresponds to one of the transversal components of the full spin 
operator of the system. This allows for the formation of anomalous expectation values. After the 
renormalization of these quantities the source is removed restoring the initial Hamiltonian. This 
procedure allows to introduce from the beginning the static spin wave corresponding broken 
symmetry of the ground state. Let us emphasize that this method does not correspond to the 
concept of mean field approximation used in work [3]. Instead we investigate the properties of 
the renormalized one-particle Matsubara Green's functions for the case of coexisting 
superconductivity and SDW phases: 
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Here  ( )U β   is the evolution operator,  ( , )x τ= x   and  , ( )c σ τx   is the electron operator in 
the interaction representation. 

We use a new diagrammatic method, recently elaborated by us for strongly correlated 
systems, based on a generalized Wick theorem and a new conception of irreducible Green's 
functions [4,5]. The irreducible Green's functions describe all spin, charge and pairing 
fluctuations which are possible in the system. Thus, an approximate knowledge of these 
quantities will allow a serious discussion of the occurrence of multiple phase transitions and 
competition between different phases. The infinite sum of these new elements leads to new 
correlation functions, Zσσ ′  ,  Yσσ ′   and  Yσσ ′  , which are the most essential elements of the theory 
describing spin, charge and pairing tendencies. The Dyson equations for the delocalized Green's 
functions, Gσσ ′ , Fσσ ′  and Fσσ ′ , contain these correlation functions together with the electronic 
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energy, 1
2( ) ( )e eσ σ= +k k Q , for different values of spin σ  and SDW wave vector Q . The 

simplest form of these equations can be obtained by using the matrix notation for the full Green's 
functions ( )Ĝ k   ( ,k iω= k  ),  
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 and correlation matrix  ( )Ẑ k  :  
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 leading to the following matrix equation for  ( )Ĝ k  :  
[ ] ),(ˆˆ)(ˆ,)(ˆ)(ˆ1)(ˆ)(ˆ )0( kZGkkGkekkG +=Λ⋅+Λ=  

 Here  is the matrix of the local Green’s function [4,5]. As remarked before, the system 
of Dyson equations allows the additional appearance of triplet superconductivity in the presence 
of singlet superconductivity and a spiral SDW state (or the appearance of a SDW if singlet and 
triplet superconductivity coexist). 
In order to close the equations of motion for the full Green's functions it is necessary to add to 
them the corresponding equations for the correlation functions. Since the Dyson equations for 
these functions do not exist we must use appropriate approximations, which are based on the 
procedure of summing the most important diagrams. Here we use the local in coordinate space 
approximation for these quantities which is obtained by summing one class of diagrams 
containing the simplest two-particle irreducible Green's functions  ( )0

2
irrG  [4,5]. These diagrams 

give the main contribution to this theory.  
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The kernels of these equations are the simplest irreducible two-particle Green's 

functions, which obey spin and frequency conservation [4,5]. These equations for the correlation 
functions together with the Dyson equations lead to a closed system of equations. 
 

Summary 
 

The main equations for the renormalized one-particle Green's and correlation functions of 
strongly correlated electron systems have been derived for the mixed phases of coexisting SDW 
with spiral polarization and superconductivity. As model Hamiltonian we have used the single-
band Hubbard model; in the corresponding diagrammatic expansion recently proposed for the 
description of strongly correlated electron systems the electron transfer term is used as the 
perturbative term. The new elements of the theory correlation functions appear, which contain the 
most important spin, charge and pairing fluctuations. The correlation functions together with the 
full Green's functions are the main elements of the new diagrammatic approach. We have then 
established the exact Dyson equations for the delocalized Green's functions; with respect to the 
equations for the correlation functions we have used simple, but in the sense of retaining the most 
important contribution approximations. The influence of a spiral polarized SDW on the 
appearance of triplet superconductivity and vice versa has been shown.  
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