SSNN 47P TOPOLOGICAL INSULATOR Bi₂Te₃ LAYERS, TRANSPORT AND THERMOELECTRIC PROPERTIES

<u>A. A. Nikolaeva^{1,2*}</u>, L. A. Konopko^{1,2}, K. Rogacki², A. Rusu¹, R. Gritsko^{1,3}

¹*Ghitu Institute of Electronic Engineering and Nanotechnologies, ASM, Chisinau,*

Moldova;²International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw,

Poland; ³ Technical University, Chisinau, Moldova

*E-mail: A.Nikolaeva@nano.asm.md

We have investigated thermoelectric properties and Shubnikov de Haas (SdH) oscillations in topological insulator (TI) Bi₂Te₃ layers. TI are electronic materials that have a bulk band gap like an ordinary insulator but have protected conduction state on their edge of surface. These states are possible due to the combination as spin- orbit interactions and time- reversal symmetry [1]. It has been predicted theoretically that thermoelectric figure of merit $ZT = \frac{\alpha^2 \sigma}{\chi}T$ can be strongly

enhanced in Bi₂Te₃ thin films TI [2].

Single- crystals of Bi_2Te_3 layer were prepared by "mechanical exfoliations" from bulk Bi_2Te_3 single crystal [3]. The resultant layers with thickness from 2-20 μ m cleaved perpendicular to the C₃ trigonal axis.

The cyclotron mass, Dingle temperature, and mobilities are experimentally determined from SdH oscillations at 4.2- 2.1K in longitudinal (H||I) and transverse (H \perp I) magnetic field according expression: $T_D = \frac{\hbar}{\pi \kappa_B} \frac{1}{\tau}$,

were T_D- Dingle temperature, κ_B -Boltzmann constant.

$$\mu = \frac{e\tau}{m_{cyc}}.$$

The maximum values mobilities was 15000cm²/sec. The temperature dependences the mobilities was establish from Hall effect.

Fig.1 Temperature dependences thermopower $\alpha(T)$ n- and p- type Bi₂Te₃ micro- layers. Inset: SdH oscillations in longitudinal magnetic fields.

We show that the room temperature power factor $\alpha^2 \sigma$ (α - thermopower, σ - electrical conductivity) and figure of merit ($ZT = \frac{\alpha^2 \sigma}{\chi}T$, χ - thermal conductivity) calculations for Bi₂Te₃ layers exhibit the maximum value at 300 K, that can be used for n and p- lags for thermoelectric applications. *This work was supported by Institutional project 15.817.02.09A*.

- [1] C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 95 (2005a) 226801.
- [2] P. Ghaemi, R. Mong, and J. E. Moore, arXiv:1002.1341 (2010).
- [3] D. Teweldebrhan, V. Goyal, A.A. Balandin, Nano Lett. 10 (2010) 1209.