## CPPP 12 P REFLECTIVITY SPECTRA OF Cu<sub>2</sub>ZnSnSe<sub>4</sub>

I. Bodnar<sup>1</sup>, L. Dermenji<sup>2</sup>, M. Guc<sup>2</sup>, S. Levcenco<sup>2</sup>, E. Arushanov<sup>2</sup>, N. N. Syrbu<sup>3</sup>

<sup>1</sup>Department of Chemistry, Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus

<sup>2</sup>Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Chisinau, Moldova <sup>3</sup>Technical University of Moldova, Chisinau, Moldova \*E-mail:chemzav@bsuir.by

Recently a promising quaternary  $Cu_2ZnSnSe_4$  compound absorber layers have attracted considerable interest due to their low cost, low-toxic and abundant elements. Thin film solar cells of  $Cu_2ZnSnSe_4$  with efficiency exceeding 9 % have been fabricated so far [1]. In this paper we present reflectivity spectra measured at 300 K in the photon energy range of 1.5 - 6 eV.  $Cu_2ZnSnSe_4$  crystals were grown by directional crystallization of the melt. The composition of the crystals was determined by the energy dispersive X-ray micro-analysis (EDAX). The average atomic ratio of Cu:Zn:Sn:Se was found to be close to stoichiometry. The reflectivity is measured using two-beam spectrometer Specord M-40.

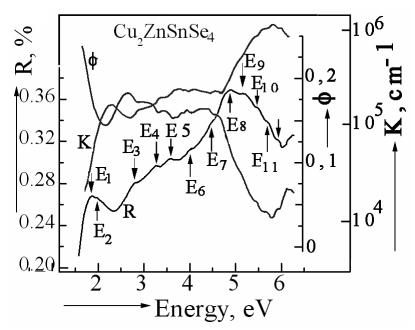



Fig.1 *Reflectivity spectra* (*R*), the extinction coefficient (*K*) and phase of reflected ray ( $\phi$ ) vs energy.

The Cu<sub>2</sub>ZnSnSe<sub>4</sub> crystals show well pronounced structures of the reflectivity spectra in the range of  $E > E_g$  at 300 K as presented in Fig.1. Up to 11 peaks are observed. By using the Kramers-Kronig relations the spectral dependences of the real  $\varepsilon_1$  and imaginary  $\varepsilon_2$  component of the complex dielectric function  $\varepsilon(E) = \varepsilon_1(E) + i \times \varepsilon_2(E)$  has been calculated for the investigated materials. As a result, the energy band structure of Cu<sub>2</sub>ZnSnSe<sub>4</sub> at photon energies higher than the fundamental band gap is derived from the analysis of the structures observed in  $\varepsilon(E)$  spectra. Additionally, the spectral dependence of the complex refractive index, extinction coefficient and absorption coefficients of Cu<sub>2</sub>ZnSnSe<sub>4</sub> crystals are determined in the 1.5-6 eV photon energy range.

Financial supports from IRSES PVICOKEST – 269167 and STCU # 5402 projects are acknowledged.

[1] I. Repins, C. Beall, N. Vora, C. De Hart, D. Kuciauskas, P. Dippo, B. To, J. Mann, Wan-Ching Hsu, A. Goodrich, R. Noufi, *Sol. Energy Mat. Sol. Cells* **101** (2012) 154