BIREFRINGENCE IN PbGa₂S₄ AND CdGa₂S₄ CRYSTALS

L. Nemerenco, V. Parvan, N. Syrbu, A. Masnic

Technical University of Moldova, Kishinev, Moldova Inemerenco@yahoo.com

To modulate the laser pulses are used crystals of niobate lithium LiNbO₃ with the properties of gyrotropy and birefringence. Cadmium thiogallate $CdGa_2S_4$ has a coefficient of nonlinear susceptibility is five times greater than the coefficient of nonlinear susceptibility of niobate lithium [1]. The dispersion of birefringence in $CdGa_2S_4$ and $PbGa_2S_4$ crystals studied at room temperature in the region of transparency (0,5 - 3 eV). In both crystals, the intersection of the spectral characteristics n_{II} and n_{\perp} are observed. In crystals of cadmium thiogallate refractive indices intersect at a wavelength 4857Å. When passing through this point in the long wavelengths $CdGa_2S_4$ crystal, from an optically positive $(n_{II} > n_{\perp})$ becomes optically negative $(n_{II} < n_{\perp})$, and at $\lambda = 485$ Å becomes optically isotropic $(n_{II} = n_{\perp})$.

Fig.1. The transmission spectra of $CdGa_2S_4$ crystals in the crossed polarizers and the refractive indices of $PbGa_2S_4$ crystals.

In the transmission spectra of CdGa₂S₄ crystals with a thickness 5 mm, placed between crossed polarizers, series of lines a1-a11 and b1-b17 are observed, who come running to the isotropic wavelength $\lambda_0 = 4857$ Å, fig.1. This device is a comb filter in the visible wavelengths range. Similar effects are observed in the transmission spectra of lead thiogallate PbGa₂S₄ crystals. From the interference spectra, spectral dependence of the refractive index n_{II} and n_⊥ and their difference $\Delta n = n_{II} - n_{\perp}$ are calculated. With the passage of light through a crystal, light waves "fast-n_{II}" and "slow-n_⊥", polarized parallel to the crystal axis have some delay between the components [2 The phase delay, proportional to the birefringence of the crystal, to create narrow-band filters are needed with a large birefringence crystals $\Delta n = n_{II} - n_{\perp}$. In the lead thiogallate crystals this value varies with the wavelength in the range 0-0,2, which is close to the record values.

[1] L. Suslikov, Z. Goldmasi, I. Kopinet, V. Slivka, Optica and spectroscopia, 51 (2), (1981),

[2] A. Yariv, P. Yen, Optical wavesw in crystals, Edition published by John Wiley&Sons, Inc. 1984