$A B M$ 9P BAND STRUCTURE OF $\mathbf{C d A l}_{2} \mathbf{S}_{\mathbf{4}}$ CRYSTALS

V.V. Zalamai ${ }^{1}$, N.N. Syrbu ${ }^{2}$, V.I. Parvan ${ }^{2}$, N. Svechkin ${ }^{2}$
${ }^{1}$ Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Republic of Moldova;
${ }^{2}$ Technical University of Moldova, 168 Stefan cel Mare Avenue, 2004 Chisinau, Republic of Moldova
*E-mail: zalamaiv@phys.asm.md

Reflection and wavelength modulated reflection spectra were investigated at temperature 10 K in $\mathrm{CdAl}_{2} \mathrm{~S}_{4}$ crystals. Ground and excited states of three excitonic series (A, B and C) were found out. Contours of reflection excitonic spectra were calculated and main parameters of excitons and bands in $\mathrm{k}=0$ were determined. The effective mass of electrons m_{c} is equal $0.30 \mathrm{~m}_{0}$ and holes masses $\mathrm{m}_{\mathrm{v} 1}, \mathrm{~m}_{\mathrm{v} 2}$ and $\mathrm{m}_{\mathrm{v} 3}$ are equal to $1.55 \mathrm{~m}_{0}, 0.90 \mathrm{~m}_{0}$ and $2.07 \mathrm{~m}_{0}$, respectively in Γ point of Brillouin zone. Valence bands $\mathrm{V}_{1}-\mathrm{V}_{2}$ splitting due to crystal field (141 meV) and bands $\mathrm{V}_{2}-\mathrm{V}_{3}$ splitting by spin-orbital interaction (152 meV) were estimated.

Fig. $1 A$ - spectral dependencies of refractive indices ($n^{\|}$and n^{\perp}) and its difference ($\Delta n=n^{\|}-n^{\perp}$); B - spectra of permittivity imaginary parts ($\varepsilon_{2}{ }^{\|}$and $\varepsilon_{2}{ }^{\perp}$) and theirs difference $\left(\Delta \varepsilon_{2}=\varepsilon_{2}{ }^{\|}-\varepsilon_{2}{ }^{\perp}\right)$ for $E \| c$ and $E \perp c$ polarizations and $\mathrm{CdAl}_{2} \mathrm{~S}_{4}$ crystals.

Three groups of maxima were discovered in reflection spectra in intrinsic region. The most long wavelength group was formed in the region of excitonic transitions (A, B and C). The second group of maxima is situated at energies $3.9-5.2 \mathrm{eV}$ and the next high energy group at $5.2-6.5 \mathrm{eV}$.

Spectral dependencies of refractive index (n), imaginary part of permittivity $\left(\varepsilon_{2}\right)$ and its differences ($\Delta \mathrm{n}$ and $\Delta \varepsilon_{2}$) were calculated by Kramers-Kronig method from measured reflection spectra, Fig. 1. Also spectral dependencies of extinction coefficients (k^{\perp} and $k^{\|}$), its difference ($\Delta k=k^{\perp}-k^{\|}$), phases ($\varphi^{\|}$and φ^{\perp}) and a phases difference ($\left.\Delta \varphi=\varphi^{\perp}-\varphi^{\|}\right)$were calculated for $E \| c$ and $E \perp c$ polarizations at temperature 80 K .

Features for all calculated optical functions have a good correlation with features observed in measured reflection spectra of $\mathrm{CdAl}_{2} \mathrm{~S}_{4}$ crystals. Spectral dependencies of refractive indices $\mathrm{n}^{\|}$and n^{\perp} intersect in three energies: $4.474 \mathrm{eV}, 4.924 \mathrm{eV}$ and 5.303 eV (marked as λ_{0}, λ_{1} and λ_{2}). The difference $\Delta n=n \| n^{\perp}$ crosses the zero axis at the same energies (wavelength), Fig. 1, A. Spectral dependencies of imaginary parts of permittivity in $\mathrm{E} \| \mathrm{c}$ and $\mathrm{E} \perp \mathrm{c}$ polarizations ($\varepsilon_{2}{ }^{\|}$and $\varepsilon_{2}{ }^{\perp}$) and its difference $\left(\Delta \varepsilon_{2}=\varepsilon_{2}{ }^{\|}-\varepsilon_{2}{ }^{\perp}\right)$ have the same features at the same wavelengths, Fig. 6, B. The intersection of spectral dependencies of refractive indices indicates that the crystal is isotropic and does not recognize the light polarization at these wavelengths. Such regularities show optical activity and take place in a lot of crystals including $\mathrm{A}^{\mathrm{II}} \mathrm{B}_{2}{ }^{\mathrm{II}} \mathrm{C}_{4}{ }^{\mathrm{VI}}$ compounds.

