EXCITONIC POLARITONS IN ZnAs₂

V.V. Zalamai¹, N.N. Syrbu², I.G. Stamov³

¹Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Republic of Moldova; ²Technical University of Moldova, Chisinau, Republic of Moldova; ³T. G. Shevchenko State University of Pridnestrovie, Tiraspol, Republic of Moldova; *E-mail: zalamaiv@phys.asm.md

Exciton polaritons of ZnAs₂ nanocrystals were investigated. Parameters of singlet excitons (A) with $\Gamma_2^-(z)$ symmetry and orthoexcitons (B) $2\Gamma_1^-(y)+\Gamma_2^-(x)$ were determined. Spectral dependences of normal and anomaly dispersions of refractive index were calculated from interferential reflection and transmission spectra. It was shown, that A and B excitonic series were due to by hole V₁ and electron C₁ bands. The values of effective masses of electrons ($m_c^* = 0.10m_0$) and holes ($m_{v1}^* = 0.89m_0$). It was revealed that the hole mass m_{v1}^* changes from 1.03m₀ to 0.55m₀ at temperature increasing from 10 K to 230 K and the electron mass m_c^* does not depend on temperature. The integral absorption A (eV•cm⁻¹) for states n = 1, 2 and 3 $\Gamma_2^-(z)$ excitons obeys to the dependence $A_n \approx n^{-3}$ it is characteristic for S-type exctionic functions. Temperature dependences of ground states integral absorption for $\Gamma_2^-(z)$ and $\Gamma_2^-(x)$ excitons differ. The ground states C and D excitons formed by $V_3 - C_1$ and $V_4 - C_1$ bands were found out and its parameters were determined.

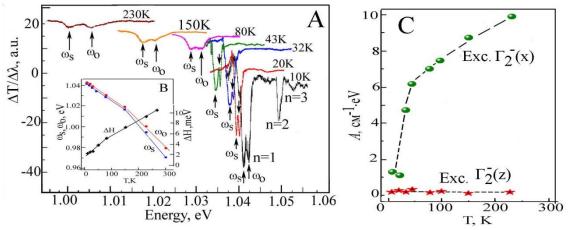


Fig. 1, A - Wavelength modulated transmission spectra $(\Delta T/\Delta \lambda)$ of $ZnAs_2$ crystals of 17 µm thickness measured in $E \perp c$ polarization. B - Temperature dependence ω_s , ω_0 and half-width absorption band ΔH . C - Temperature dependence of integral absorption of excitons $\Gamma_2^-(z)$ and $\Gamma_2^-(x)$ ground states (n = 1).

Contours of wavelength modulated transmission spectra $(\Delta T/\Delta \lambda)$ in E⊥c polarization shift to longwavelengths with temperature increasing, fig. 1, A. Simultaneously the bands minima ω_s and ω_0 move apart energetically and its half-width (Δ H) changes, fig. 1, B. A ω_s , ω_0 and Δ H change gradient change in temperature range 100 - 130 K, what is evidence of different temperature shift coefficients of bands responsible for $\Gamma_2^-(z)$ and $\Gamma_2^-(x)$ exctionic lines. Quantitative estimates of integral absorption A (eV·cm⁻¹) have been made for absorption coefficients received form Kramers-Kronig analysis of reflection spectra for n = 1, 2 and 3 $\Gamma_2^-(z)$ excitons. The integral absorptions A are equal to 0.104 eV·cm⁻¹, 0.002 eV·cm⁻¹ and 0.001 eV·cm⁻¹ for excited state for n = 1, n =2 and n = 3 lines, respectively. This quantity measurements of integral absorption coefficient A for excitonic series $\Gamma_2^-(z)$ shows that the integral absorption for lines n series subordinates to dependence $A_n \approx n^{-3}$ that is typical for exciton envelope function of S-type. The integral absorption (A) for n = 1 line of $\Gamma_2^-(x)$ excitons changes in the range 1.44 - 10 eV·cm⁻¹ at temperature variation form 10 K to 230 K (see Fig. 1, C).