

Available online at www.sciencedirect.com

Superlattices and Microstructures

Superlattices and Microstructures 43 (2008) 292-302

www.elsevier.com/locate/superlattices

Biopolymer-assisted self-assembly of ZnO nanoarchitectures from nanorods

O. Lupan^{a,b,*}, L. Chow^b, G. Chai^c, A. Schulte^b, S. Park^b, O. Lopatiuk-Tirpak^b, L. Chernyak^b, H. Heinrich^{b,d,e}

^a Department of Microelectronics and Semiconductor Devices, Technical University of Moldova, 168 Stefan cel Mare Blvd., Chisinau, MD-2004, Republic of Moldova

^b Department of Physics, University of Central Florida, Orlando, FL 32816-2385, USA

^c Apollo Technologies, Inc., 205 Waymont Court, S111, Lake Mary, FL 32746, USA

^d Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL 32816, USA

^e Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando,

FL 32816, USA

Received 25 May 2007; received in revised form 27 November 2007; accepted 6 December 2007 Available online 24 January 2008

Abstract

We have investigated three-dimensional (3-D) architectures – microspheres and radial structures – based on biopolymer-assisted self-assembly from one-dimensional ZnO nanorods. The developed method is simple, rapid and cost-effective and can be used for self-assembly of different complex superstructures. A possible model of 3-D architectures self-assembled with biopolymer assistance is presented using minimum energy considerations. Scanning electron microscopy, X-ray diffraction, energy dispersive Xray spectroscopy, transmission electron microscopy, micro–Raman spectroscopy and cathode luminescence investigations show that the novel 3-D architectures are built from high-purity ZnO nanorods with a wurtzite structure. The resulting radial structures show an intense ultraviolet (UV) cathode luminescence emission suggesting applications as UV light emitting diodes or lasers. Their structural characteristics endow them with a broad area of applications and offer a possibility to be used as fundamental low-dimensional building units. These building units open opportunities for the self-assembly of multifunctional nanostructured systems with applications in bioscience and nanomedicine, electronics and photonics. (© 2007 Elsevier Ltd. All rights reserved.

Keywords: ZnO nanorod; Self-assembly; Nanofabrication; Cathodeluminescence

^{*} Corresponding author at: Department of Microelectronics and Semiconductor Devices, Technical University of Moldova, 168 Stefan cel Mare Blvd., Chisinau, MD-2004, Republic of Moldova. Tel.: +373 (22) 509914; fax: +373 (22) 509910.

E-mail addresses: lupanoleg@yahoo.com, lupan@physics.ucf.edu (O. Lupan).