A rounding algorithm for approximating minimum Manhattan networks
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Abstract. For a set T of n points (terminals) in the plane,
a Manhattan network on T is a network N(T) = (V, E) with
the property that its edges are horizontal or vertical segments
connecting points in V' D T and for every pair of terminals,
the network N(T') contains a shortest /i-path between them.
A minimum Manhattan network on T is a Manhattan network
of minimum possible length. The problem of finding minimum
Manhattan networks has been introduced by Gudmundsson, Lev-
copoulos, and Narasimhan (APPROX’99) and its complexity sta-
tus is unknown. Several approximation algorithms (with fac-
tors 8,4, and 3) have been proposed; recently Kato, Imai, and
Asano (ISAAC’02) have given a factor 2 approximation algo-
rithm, however their correctness proof is incomplete. In this
note, we propose a rounding 2-approximation algorithm based
on a LP-formulation of the minimum Manhattan network prob-
lem.

1 Introduction

A rectilinear path P between two points p, g of the plane R?
is a path connecting p and ¢ and consisting of only horizon-
tal and vertical line segments. More generally, a rectilinear
network N = (V, E) consists of a finite set V' of points of R?
(the vertices of N) and of a finite set of horizontal and ver-
tical segments connecting pairs of points of V' (the edges of
N). The length I(P) (or I(N)) of a rectilinear path P (or of a
rectilinear network N) is the sum of lengths of its edges. The
l;-distance between two points p = (p®,p¥) and ¢ = (¢”, ¢¥)
in the plane R? is d(p, q) == ||[p—qll1 = |[p” —¢”| +|p¥ —¢|.
An [;-path between two points p,q € R? is a rectilinear path
connecting p, ¢ and having length d(p, q).

Given a set T = {t1,...,t,} of n points (terminals) in
the plane, a Manhattan network [3] on T is a rectilinear net-
work N(T) = (V, E) such that T C V and for every pair of
points in T, the network N(T') contains an l;-path between
them. A minimum Manhattan network on T is a Manhat-
tan network of minimum possible length and the Minimum
Manhattan Network problem (MMN problem) is to find such
a network.

The minimum Manhattan network problem has been in-
troduced by Gudmundsson, Levcopoulos, and Narasimhan
[3] and its complexity status is unknown. Gudmundsson et
al. [3] proposed a factor 4 and a factor 8 approximation
algorithms with different time complexity. They also con-
jectured that there exists a 2-approximation algorithm for
this problem. Kato, Imai, and Asano [4] presented a factor
2 approximation algorithm, however, their correctness proof
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is incomplete. Following [4], Benkert, Shirabe, and Wolf [1]
outlined a factor 3 approximation algorithm and presented a
mixed-integer programming formulation of the MMN prob-
lem. Notice that all four mentioned algorithms are geometric
and some of them employ results from computational geom-
etry. Nouioua [6] presented another factor 3 approximation
algorithm based on the primal-dual method from linear pro-
gramming. In this note we present a rounding method ap-
plied to the optimal solution of the linear program described
in [1, 6] and leading to a 2-approximation algorithm for the
minimum Manhattan network problem. For approximation
algorithms based on rounding techniques, see the book by
Vazirani [10].

Gudmundsson et al. [3] introduced the minimum Man-
hattan networks in connection with the construction of
sparse geometric spanners preserving the [;-distances be-
tween the terminals. Such spanners have applications in
VLSI circuit design, network design, distributed algorithms
and other areas. Lam, Alexandersson, and Pachter [5] sug-
gested to apply minimum Manhattan networks to design ef-
ficient search spaces for pair hidden Markov model (PHMM)
alignment algorithms.

Figure 1: A minimum Manhattan network

2 Properties and LP-formulation

In this section, we present several properties of minimum
Manhattan networks. First, we define some notations. De-
note by [p,g|] the linear segment having p and ¢ as end-
points. The set of all points of R? lying on I;-paths between
p and q constitute the smallest axis-parallel rectangle R(p, q)
containing the points p, q. For two terminals ¢;,¢; € T, set
R;j := R(t;,t;). (This rectangle is degenerated if ¢; and t;
have the same z- or y-coordinate.) We say that R;; is an
empty rectangle if R;; N T = {t;,t;}. The complete grid is
obtained by drawing in the smallest axis-parallel rectangle
containing the set T" a horizontal segment and a vertical seg-
ment through every terminal. Using standard methods for
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establishing Hanan grid-type results [12], it can be shown
that the complete grid contains at least one minimum Man-
hattan network [3].

(a) (b)

Figure 2: Pareto envelope of four points

A point p € R? is said to be an efficient point of T
[2, 11] if there does not exist any other point ¢ € R? such
that d(q,t;) < d(p,t;) for t; € T and d(q,t;) < d(p,t;) for at
least one t; € T. Denote the set of all efficient points by P,
called the Pareto envelope of T. An optimal O(nlogn) time
algorithm to compute the Pareto envelope of n points in the
l1-plane is presented in [2] (for properties of P and an O(n?)
time algorithm see also [11]). In particular, it is known that
P is ortho-convex, i.e. the intersection of P with any verti-
cal or horizontal line is convex, and that every two points of
‘P can be joined in P by an l;-path. P, being ortho-convex,
is a union of ortho-convex (possibly degenerated) rectilinear
polygons (called blocks) glued together along vertices (they
become cut points of P); Fig. 2 presents two generic forms
of the Pareto envelope of four points.

Lemma 2.1 The Pareto envelope P contains at least one
minimum Manhattan network on T'.

Proor. Pick a minimum Manhattan network N(T") hav-
ing some vertices and edges outside P. We can find two
points p,q € N(T') on the boundary of P that are connected
in N(T) by an l1-path L lying outside P. Replace L by the
li-path L' connecting p and ¢ along the boundary of the
Pareto envelope. Since all points of T" are located inside or
on the boundary of P, the network N'(T) obtained from
N(T) by replacing the path L by L' is Manhattan and its
length is at most the length of N(T). Applying the same
procedure to N'(T'), after a finite number of steps we will
obtain a minimum Manhattan network contained in P. O

By this result, in order to solve the MMN problem on T’
it suffices to complete the set of terminals by adding to T
the cut points of P and to solve a MMN problem on each
block of P with respect to the new and old terminals located
inside or on its boundary. Due to this decomposition of the
MMN problem into smaller subproblems, further we can as-
sume without loss of generality that P consists of a single
block with at least 3 terminals; denote by P the boundary
of this ortho-convex rectilinear polygon. Then every convex
vertex of P is a terminal. Since the sub-path of 0P between
two consecutive convex vertices of 0P is the unique /;-path

connecting these vertices inside P and 9P is covered by such
I1-paths, from Lemma 2.1 we conclude that the edges of OP
belong to any minimum Manhattan network inside P.

From Lemma 2.1 and the result of [3] mentioned above
we conclude that the part ' = (V,E) of the complete
grid contained in P hosts at least one minimum Manhat-
tan network. Two edges of I' are called twins if they are
opposite edges of a rectangular face of the grid I'. Two
edges e, f of I' are called parallel if there exists a sequence
e =e1,€2,...,emq1 = f of edges such that fori =1,...,m
the edges e;,e;41 are twins. By definition, any edge e is par-
allel to itself and all edges parallel to e have the same length.
Notice also that exactly two edges parallel to a given edge e
belong to OP.

We continue with the notion of generating set introduced
in [4] and used in approximation algorithms from [1, 6]. A
generating set is a subset F of pairs of terminals (or, more
compactly, of their indices) with the property that a rec-
tilinear network containing l;-paths for all pairs in F' is a
Manhattan network on T'. For example, Fiz consisting of all
pairs 4§ with R;; empty is a generating set. In the next sec-
tion, we will describe a sparse generating set contained in
Fg.

To give an LP-formulation of the minimum Manhat-
tan network problem, let F' be an arbitrary generating
set; for each pair ij € F, let I';; := I' N R(¢;,¢;) and
set I';; = (Vij, Eij). We formulate the MMN problem as
a cut covering problem using an exponential number of con-
straints, which we further convert into an equivalent formu-
lation that employs only a polynomial number of variables
and constraints. In both formulations, I, will denote the
length of an edge e of the network I' = (V| E) and z. will be
a 0-1 decision variable associated with e. A subset of edges
C of E;; is called a (t;,t;)-cut if every li-path between ¢;
and t; in I';; meets C. Let C;; denote the collection of all
(ts, tj)—cuts and set C := U;jerC;;. Then the minimum Man-
hattan networks can be viewed as the optimal solutions of
the following integer linear program (the dual of the relax-
ation of this program is a packing problem of the cuts from

C):

minimize S lexe (1)
eckE
subject to VCeClC: Y xz.>1

ecC
Vee E: z, € {0,1}.

Indeed, every Manhattan network is a feasible solution of
(1). Conversely, let z.,e € E, be a feasible solution for
(1). Considering z.’s as capacities of the edges e of ', and
applying the covering constraints and the Ford-Fulkerson’s
theorem to each network I';;,4j € F, oriented as described
below, we conclude the existence in I';; of an integer (¢;,¢;)-
flow of value 1, i.e., of an l1-path between t; and ;. As a
consequence, we obtain a Manhattan network of the same
cost. This observation leads to the second integer program-
ming formulation for the MMN problem (but this time, hav-
ing a polynomial size). For each pair ij € F' and each edge



e € E;; introduce a (flow) variable f¥. Orient the edges
of I';; so that the oriented paths connecting ¢; and t; are
exactly the [;-paths between those terminals. For a vertex
v € Vi; \ {t;,t;} denote by F;’; (v) the oriented edges of T';;
entering v and by I';;(v) the oriented edges of T';; out of v.
We are lead to the following integer program:

minimize > lex, (2)
ecE
subject to Vij € F,Yv € Vi; \ {ti, t;} -
X =X 1
e€lf; (v) e€l';; (v)
VijeF: Y fi=1
e€l'; (t;)

VijeF,VCEEij ZOSf;jSZL'e

Ve€ E :z. € {0,1}.

Denote by (1') and (2') the LP-relaxation of (1) and (2)
obtained by replacing the boolean constrains z, € {0,1} by
the linear constraints z, > 0. Since (2') contains a polyno-
mial number of variables and inequalities, it can be solved
in strongly polynomial time using the algorithm of Tardos
[8]. The z-part of any optimal solution of (2') is an optimal
solution of (1'). Notice also that there exist instances of the
MMN problem for which the cost of an optimal (fractional)
solution of (1') or (2') is smaller than the cost of an optimal
(integer) solution of (1) or (2). Fig. 3 shows such an exam-
ple (z. =1 for bolded edges and z. = } for dashed edges).
Finally observe that in any feasible solution of (1') and (2')
for any edge e € 9P holds =, = 1.

Integer optimum = 28 Fractional optimum = 27.5

Figure 3: Integrality gap

3 Strips and staircases

A degenerated empty rectangle R;; is called a degenerated
vertical or horizontal strip. A non-degenerated empty rect-
angle R;; is called a wvertical strip if the z-coordinates of
t; and t; take consecutive values in the sorted list of 2-
coordinates of the terminals and the intersection of R;;
with degenerated vertical strips is either empty or one of
the points ¢; or t;. Analogously, a non-degenerated empty
rectangle R;; is called a horizontal strip if the y-coordinates
of t; and t; take consecutive values in the sorted list of y-
coordinates of the terminals and the intersection of horizon-
tal sides of R;; with degenerated horizontal strips is either

empty or one of the points t; or ¢;. The sides of a verti-
cal (resp., horizontal) strip R;; are the vertical (resp., hor-
izontal) sides of R;;. We say that the strips R;y and R;j
(degenerated or not) form a crossing configuration if they
intersect and the Pareto envelope of the points t;,t:,;,t;
is of type (a); see Fig. 2. The importance of such con-
figurations resides in the following property whose proof is
straightforward:
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Figure 4: Staircase S;;;7;/

Lemma 3.1 If the strips R;» and R;; form a crossing con-
figuration as in Fig. 4, then from the l1-paths between t; and
ty and between t; and tj: one can derive an li-path connect-
ing t; and tj and an li-path connecting ty and t;.

For a crossing configuration Ry, R;;, denote by o and
o' the cut points of the rectangular block of the Pareto en-
velope of t;,t;,t;,t;, and assume that the four tips of this
envelope connect o with ¢;,t; and o’ with ¢i,t;. Addition-
ally, suppose without loss of generality, that ¢; and t; be-
long to the first quadrant Q; with respect to the origin
o (the remaining quadrants are labelled Q, Q3, and Q4).
Then t; and t; belong to the third quadrant with respect
to the origin o. Denote by Tj; the set of all terminals
tr € (T \ {ti,t]'}) N Q; such that (1) R(tk,o) nNT = {tk}
and (ii) the region {g € Q2 : ¢¥ <t}}U{q€ Q4 :¢” <]}
does not contain any terminal of T'. If T;; is nonempty, then
all its terminals belong to the rectangle R;;, more precisely,
they are all located on a common shortest rectilinear path
between #; and t;. Denote by S;j;» the non-degenerated
block of the Pareto envelope of the set Tj; U {o,t;,t;} and
call this rectilinear polygon a staircase; see Fig. 4 for an il-
lustration. The point o is called the origin of this staircase.
Analogously one can define the set Tj; and the staircase
Sirj11s; with origin o'. Two other types of staircases will be
defined if ¢;,¢; belong to the second quadrant and ty,t;
belong to the fourth quadrant. In order to simplify the pre-
sentation, further we will assume that after a suitable geo-
metric transformation every staircase is located in the first



quadrant. (Notice that our staircases are different from the
staircase polygons occurring in the algorithms from [3].)

Let a be the leftmost highest point of the staircase S;;j ;v
and let 8 be the rightmost lowest point of this staircase. De-
note by M;; the monotone boundary path of S;;);; between
o and § and passing via the terminals of T;;. By definition,
Sijjij» NT = Tj. By the choice of T;j, there are no terminals
of T located in the regions QF := {g € Q2 : ¢¥ < a¥} and
QI = {g € Q4 :¢* < f%}. In particular, no strip traverses
a staircase. From the definition of staircase immediately
follows that two staircases either are disjoint or their inter-
section is a subset of terminals; in particular, every edge of
the grid T" belongs to at most one staircase.

Let F' be the set of all pairs 4j such that R;; is a strip.
Let F” be the set of all pairs 'k such that there exists a
staircase S;jjyj» such that 5 belongs to the set T;;.

til ti2

t; t;r
1 2

Figure 5: To the proof of Lemma 3.2

Lemma 3.2 F := F' UF" C Fy is a generating set.

ProOOF. Let N be a rectilinear network containing ;-
paths for all pairs in F. To prove that N is a Manhattan net-
work on T, it suffices to establish that for an arbitrary pair
kk' € Fg \ F, the terminals t; and t; can be joined in N by
an [;-path. Assume without loss of generality that 7, <t}
and t}, < t¥. The vertical and horizontal lines through
the points #; and t; partition the plane into the rectangle
Ry, four open quadrants and four closed unbounded half-
bands labelled counterclockwise By, Bs, Bs, and B,. Since
tr € By NT and tp € B3 NT, there should exist at least
one vertical strip between a terminal from B; and a termi-
nal from Bs. Denote by R;,;; the leftmost strip and by R;,;
the rightmost strip traversing the rectangle Ry . These two
strips may coincide (and one or both of them may be degen-
erated), however they are both different from Ry because
kk' ¢ F. Suppose without loss of generality that t;,,¢;, € By
and t;,t; € Bs. Analogously define the lowest horizontal
strip Ry, j» and the highest horizontal strip R;, ;; traversing
Ry . Again these strips may coincide and/or may be degen-
erated but they must be different from Ry . Let t;,,t;, € By
and tj;,tj; € Bo; see Fig. 5. From the choice of the strips

in question, we conclude that each of four combinations of
horizontal and vertical strips constitute crossing configura-
tions. Moreover, S;,j, (i, and Sy ji|;,;, must be staircases.
The vertex tj, either belongs to Tj,;, or coincide with one of
the vertices t;,,;,. Analogously, ¢y € Ty U {ty,t; }. By
Lemma 3.1 there is an [;-path connecting each of the ter-
minals t;,,ti,,tj,,t;, to each of the terminals 3, ¢;, 5, .
Also there exist I1-paths between ¢4 and t;;,t;; and between
tyr and t;,,t;,. Combining certain pieces of these [;-paths
we will produce an [;-path connecting ¢; and tg. O

4 The rounding algorithm

Let (x,£)=((z¢)ecE, (f¥)ecr,ijer) be an optimal solution
of the linear program (2') (in general, this solution is not
half-integral). The algorithm rounds up the solution (x.,f)
in three phases. In Phase 0, we insert all edges of 9P in
the integer solution. In Phase 1, the rounding is performed
inside every strip R;;, in order to ensure the existence of an
l,-path P between the terminals ¢; and ¢;. In Phase 2,
an iterative rounding procedure is applied to each staircase.

Let R;; be a strip. If R; is degenerated, then [t;,t,] is
the unique /;-path between t; and t;, yielding z, = fi# =1
for any edge e € [t;,ti]. If R;y is not degenerated, then
any l;-path in T’ between ¢; and t; has a simple form: it
goes along the side of R;y containing t;, then it makes a
turn by following an edge of T' traversing R;» (called fur-
ther a switch of R;), and continues its way on the side
containing t; until it reaches ty. Although, it may happen
that several such [;-paths have been used by the fractional
flow f# between t; and t;, the cut condition ensures that
To+Te > I+ fi > 1for any pair e, ¢ of twins on opposite
sides of the strip Ry, yielding max{z., 2o} > .

Let p be the furthest from ¢; vertex on the side of R;;
containing ¢; such that z, > % for every edge e of the seg-
ment [t;, p]. Let pp’ be the edge of T' incident to p that tra-
verses the strip R;;. By the choice of p we have z, > % for
all edges e of the segment [p',t;].

Phase 1 (procedure RoundStrip). For each strip Ry, if Ry
is degenerated, then take in the integer solution all edges of
[t;, t], otherwise round up the edges of [t;, p] and [p', ;] and
take the edge pp' as a switch of R;y; in both cases, denote
by P;y the resulting l;-path between t; and ¢;.

Let S;ir)j; be a staircase. Denote by ¢ the closest to ¢;
common point of the [;-paths P;; and Pj; (this point is a
corner of the rectangular face of I' containing the vertices o
and o). Let P, and Pj, be the sub-paths of P, and Py
comprised between ¢ and the terminals ¢; and t;, respec-
tively. Now we slightly expand the staircase S |;; by con-
sidering as S;j ;5 the region bounded by the paths P:{, , P;JT,,
and M;; (P and P}, are not included in the staircase but
M;; and the terminals from the set Tj; are). Inside Sy j51,
any flow f* (or f*¥'), k € Tj;, may be as fractional as pos-
sible: it may happen that several /;-paths between t; and
ty carry over flow f*'. Any such l;-path intersects one of
the paths P, or P, therefore the total f*-flow arriving
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at P, UP, is equal to 1. (This flow can be redirected to ¢
via the paths P}, and P]-J;,, and further, along the path Pj;,
to the terminal ¢;). Therefore it remains to decide how to
round up the flow f* inside the expanded staircase Siirjji -
For this, notice that either the total f*¥-flow carried over
by the [;-paths that arrive at P;{, is at least % or the total

f* _flow on the l;-paths that arrive at P}t is at least 3.

ti

b

Figure 6: Procedure RoundStaircase

Phase 2 (procedure RoundStaircase). For a staircase
Siir|jj» defined by the I1-paths P;{, and P]-J;-, and the mono-
tone path M;;, find the lowest terminal ¢,, € T;; such that
the f"”"—ﬂow on [;-paths between t,, and t; that arrive first
at P}, is > 1 (we may suppose without loss of generality that
this terminal exists). Let ¢, be the terminal of T}; immedi-
ately below #,,, (this terminal may not exist). By the choice
of tm, the f*'-flow on paths which arrive at Pj; is > 1.
Denote by ¢’ the intersection of the horizontal line passing
via the terminal t,, with the path P;},. Analogously, let ¢"
denote the intersection of the vertical line passing via ¢, with
the path P;%,. Round up all edges of the horizontal segment
[tm, '] and all edges of the vertical segment [ts, ¢"]. If T;;
contains terminals located above the horizontal line (¢,,, ¢'),
then recursively call RoundStaircase to the expanded stair-
case defined by [tn,,¢'], the sub-path of P}, comprised be-
tween ¢’ and t;, and the sub-path M;, of the monotone path
M;; between t,, and a. Analogously, if T;; contains termi-
nals located to the right of the vertical line (¢, ¢"), then
recursively call RoundStaircase to the expanded staircase
defined by [ts, #"], the sub-path of P]-J;-, comprised between
¢'" and t;, and the sub-path Mj; of the monotone path M;;
between t; and §; see Fig. 6 for an illustration.

Let Ey denote the edges of I which belong to the bound-
ary of the Pareto envelope of T'. Let E; be the set of all edges
picked by the procedure RoundStrip and which do not be-
long to Fy, and let E» be the set of all edges picked by
the recursive procedure RoundStaircase and which do not

belong to Ey U E;. Denote by N* = (V* Ey U E; U E»)
the resulting rectilinear network. From Lemma 3.2 and the
rounding procedures presented above we infer that N* is a
Manhattan network. Let x* be the integer solution of (1)
associated with N*, i.e., 2} = 1if e € Ey U E; U E» and
z; = 0 otherwise.

5 Analysis

In this section, we will show that the length of the Man-
hattan network N* is at most twice the cost of the optimal
fractional solution of (1'), i.e., that

cost(x*) = Z lex) <2 Z leze = cost(x). (3)

e€FE e€E

Recall that z. = 2} = 1 holds for every edge e € Ey. To es-
tablish the inequality (3), to every edge e € E; U Ey we
will assign a set E. of parallel to e edges such that (i)
Yeep, Te > 3 and (i) B, N E; = () for any two edges
e, f € FE U Es.

First pick an edge e € E;, say e € P;y for a strip R;;r.
If e belongs to a side of this strip, then z, > %, and in this
case we can set E, := {e}. Now, if e is the switch of R;y,
then E. consists of anyone of the two edges of 0P parallel to
e. From the definition of strips one conclude that no other
switch can be parallel to these edges of P. Therefore each
pair of parallel edges of P may appear in at most one set
E, for a switch e.

Finally suppose that e € FEs, say e belongs to the ex-
panded staircase S;;|;;. If e belongs to the segment [t,, @],
then FE. consists of e and all parallel to e edges of S,-i/| '
located below e; see Fig. 6. Since every [;-path between
t, and t; intersecting the path :{, contains an edge of E.,
we infer that the value of the f™¢-flow traversing the set
E. is at least %, therefore 3", cp, Ter 2 %, thus establish-
ing (i). Analogously, if f is an edge of the vertical segment
[ts, ¢"], then Ey consists of f and all parallel to f edges
of Sjy ;50 located to the left of f. Obviously, E, N Ey = 0.
Since F, and Ej belong to the region of S;;;;» delimited by
the segments [t,,, '] and [ts, ¢"] and the recursive calls of
the procedure RoundStaircase concern the staircases dis-
joint from this region, we deduce that E. and Ey are disjoint
from the sets E,r for all edges e’ picked by the recursive calls
of RoundStaircase to the staircase S;;|;;. Every edge of T’
belongs to at most one staircase, therefore E.NE; = () if the
edges e, f € E belong to different staircases. Finally, since
there are no terminals of T' located below or to the left of
the staircase S;;/|;;, no strip traverses this staircase (a strip
intersecting S;yr;;+ either coincides with R;; and Rjjr, or in-
tersects the staircase along segments of the boundary path
M;;). Therefore, no edge from E; can be assigned to a set
E, for some e € Ey N S;yr|j;, thus establishing (ii) and the
desired inequality (3). Now, we are in position to formulate
the main result of this note:



Theorem 5.1 The rounding algorithm described in Section
4 achieves an approzimation guarantee of 2 for the minimum
Manhattan network problem.

, and the paths P}, and

i3’

Remark. Given a staircase Sy ;;
P;g, , the problem of constructing a minimum rectilinear net-
work such that every terminal of T;; can be connected by
an [3-path to P;S U PJ.J;., can be solved in polynomial time
using dynamic programming (for example, by adapting the
algorithm from [7] for the Rectilinear Steiner Arborescence
problem on staircases). However, we do not know how to
analyze this solution via linear programming. Furthermore,

we do not have examples of staircases having an integrality
gap in (1).

6 Conclusions and perspectives

In this paper, we presented a simple rounding algorithm for
the minimum Manhattan network problem and we estab-
lished that the length of the Manhattan network returned
by this algorithm is at most twice the cost of the optimal
fractional solution of the MMN problem. Nevertheless, ex-
periences show that the ratio between the costs of the solu-
tion returned by our algorithm and the optimal solution of
the linear programs (1') and (2') is much better than 2. We
do not know the worst integrality gap of (1) (the worst gap
obtained by computer experiences is about 1.087). Say, is
this gap smaller or equal than 1.57 Does there exist a gap in
the case when the terminals are the origin and the corners
of a staircase?

The minimum Manhattan network problem can be com-
pared with the (N P-complete) Rectilinear Steiner Arbores-
cence problem (RSA problem) [7]. In this problem, given n
terminals (lying in the first quadrant), one search for a mini-
mum rectilinear network comprising an /;-path between the
origin of coordinates and each of the n terminals (clearly,
such an optimal network will be a tree). The LP-formulation
for the MMN problem can be viewed as a generalization of
the LP-formulation of the RSA problem given in [9]. The
paper [7] presents an instance of the RSA problem having
an integrality gap. To our knowledge, the worst integrality
gap for this problem is also not known.

Consider now the following common generalization of
the MMN and RSA problems which we call the F-restricted
MMN problem: given a set of n terminals and a collection
F of pairs of terminals, find a minimum rectilinear network
Np(T), such that for every pair t;t; € F, the network Ng(T')
contains an /i-path between ¢; and t;. If (T, F) is a com-
plete graph, then we obtain the MMN problem and if (7', F)

is a star, then we obtain the RSA problem. We can show
that there exists a minimum F-restricted Manhattan net-
work contained in the sub-grid of I' generated by all empty
rectangles. Using this grid, one can view (1) and (2) as in-
teger programming formulations for the F-restricted MMN
problem.

Notice that the rounding algorithm presented in our note
(as well as all other approximation algorithms for the MMN
or RSA problems) cannot be extended in a direct way to
get an approximation algorithm for the F-restricted MMN
problem. Developing such an algorithm seems to be an inter-
esting question. A simple example shows that the integrality
gap in this case is at least 1.5: consider the four corners of
a unit square as the set T of terminals, and let F' consists
of the two pairs of opposite corners of this square. Then
Te = % for every side e of the square is an optimal solution
of (1') having cost 2, while an optimal integer solution uses
three edges of the square and has cost 3.

References

[1] M. Benkert, T. Shirabe, and A. Wolff, The minimum Manhat-
tan network problem - approximations and exact solutions, 20th
EWCG, March 25-26, Seville (Spain), 2004.

[2] G. Chalmet, L. Francis, and A. Kolen, Finding efficient solutions
for rectilinear distance location problems efficiently, Furopean J.
Operations Research, 6 (1981), 117-124.

[3] J. Gudmundsson, C. Levcopoulos, and G. Narasimhan, Approxi-
mating a minimum Manhattan network, Nordic J. Computing, 8
(2001), 219-232 and Proc. APPROX’99, 1999, pp. 28-37.

[4] R. Kato, K. Imai, and T. Asano, An improved algorithm for the
minimum Manhattan network problem, ISAAC’02, Lecture Notes
Computer Science, 2518, 2002, pp. 344-356.

[5] F. Lam, M. Alexanderson, and L. Pachter, Picking alignements
from (Steiner) trees, J. Computational Biology, 10 (2003), 509—
520.

[6] K. Nouioua, Une approche primale-duale pour le probleme du
réseau de Manhattan minimal, RAIRO Operations Research (sub-
mitted).

[7] S.K. Rao, P. Sadayappan, F.K. Hwang, and P.W. Shor, The recti-
linear Steiner arborescence problem, Algorithmica, 7 (1992), 277—
288.

[8] E. Tardos, A strongly polynomial algorithm to solve combinato-
rial linear programs, Operations Research, 34 (1986), 250-256.

[9] V. Trubin, Subclass of the Steiner problem on a plane with recti-
linear metric, Cybernetics, 21 (1985), 320-322.

V.V. Vazirani,
Berlin, 2001.

R.E. Wendell, A.P. Hurter, and T.J. Lowe, Efficient points in lo-
cation theory, AIEE Transactions 9 (1973), 314-321.

[10] Approzimation Algorithms, Springer-Verlag,

(11]

[12] M. Zachariasen, A catalog of Hanan grid problems, Networks 38

(2001), 76-83.



