
Conferinţa tehnico-ştiinţifică a studenţilor, masteranzilor şi doctoranzilor, 1-3 aprilie 2020, Chișinău, Republica Moldova

159

CONTEXT-FREE GRAMMAR DEFINED FOR LADDER LOGIC

Marina PETICÎ1*,
Ecaterina COTELNIC1,

Dina CIORBA1,
Dacian RUSU1

1Technical University of Moldova, Faculty of Computers, Informatics and Microelectronics,
 Department of Software Engineering and Automatics, FAF – 181/182, Chișinău, Republic of Moldova

*Reprinth Author: Peticî Marina, marina.petici@isa.utm.md

Abstract: This article describes the grammar and the lexical parser of a domain-specific language
(DSL) made for a Programmable Logic Controller (PLC). Furthermore, this paper expounds how
the DSL, which is being developed, will work, what functions will be implemented and how this
language will, with the help of Ladder Logic (LL), ease the interaction between humans and PLCs.

Keywords: domain-specific language, programmable logic controller, context-free grammar,
ladder logic, graphic language, ladder diagram

Introduction
 The genesis of all reliable automated processes lies at the core of programmable logic
controllers (PLSs) and they continue to evolve once new technologies are added to their
capabilities. Starting as a replacement for electromechanical relay system, a PLC is an industrial
grade computer that uses programmable memory, to implement and store multiple input and output
arrangements, arithmetic logic, counting and timing, in order to control and process the given
information. “The programmable logic controller is, then, basically a digital computer designed
for use in machine control” [1].
 A widely used programming language for PLCs is ladder logic (LL), the reason behind its
popularity being a close replica of the relay system. Its structure reassemble a ladder and has two
vertical bars (system power) filled with a series of vertical “rungs” between them, each one
representing a control circuit. It also uses contacts and coils that act as inputs and outputs, the last
ones not being physical but represented as a single bit in the PLC’s memory. In addition, contacts
can be arranged in series to represent AND logic and in parallel for OR one.
 Due to the fact that PLCs were designed to be operated by engineers that may not be
familiar with computer programming languages, the simplest way to coalesce those fields is by
creating a domain-specific language which will ease the “communication” between them. By
having at the base the LL method of representing a graphical diagram based on the circuit diagrams
of relay logic hardware, the process of creating a graphical language for programming PLCs is
becoming substantially easier, as for the inputs we have only 0 and 1 and the variables alternate
from contacts to coils [2].

Reference grammar

 The language itself can be seen as a set of connections between logical checkers (contacts)
and actuators (coils). If a path can be traced between the left side of the rung and the output,
through asserted (true or "closed") contacts, the rung is true and the output coil storage bit is
asserted (1) or true. If no path can be traced, then the output is false (0) and the "coil" by analogy
to electromechanical relays is considered "de-energized". Ladder logic has contacts that make or
break circuits to control coils. Each coil or contact corresponds to the status of a single bit in the
programmable controller's memory. Unlike electromechanical relays, a ladder program can refer
any number of times to the status of a single bit, equivalent to a relay with an indefinitely large
number of contacts. So-called "contacts" may refer to physical ("hard") inputs to the programmable
controller from physical devices such as limit switches via an integrated or external input module.

mailto:marina.petici@isa.utm.md
https://en.wikipedia.org/wiki/Relay

Conferinţa tehnico-ştiinţifică a studenţilor, masteranzilor şi doctoranzilor, 1-3 aprilie 2020, Chișinău, Republica Moldova

160

 A program consists of a single chain, enclosed in two symbols "|" in the beginning and in
the end. In a program must firstly appear an input (contact) and ends with an output (coil). Each
problem should have at least one contact, one coil and one operation.
 There are 4 types of variables, text form: openContact, closedContact, activeCoil and
inactiveCoil. Graphic form is presented in the Table 1.

Table 1
Elements of the DSL

rung input: checkers
(contacts)

open contact

input

closed contact

input with a logical NOT

rung output:
actuators (coils)

active coil

output

inactive coil

output with a logical NOT

 The variables of types openContact or closedContact are better to be called with an ‘I’ or
‘M’ uppercase and a number. The variables of types inactiveCoil or activeCoil are recommended
to be called with an "M" or "Q"00 and a number. All variables are actually of the type boolean in
a form of bits (0 or 1).
 All closed and open contacts, as inputs, must have some values. Active and inactive coils,
as outputs, and memory should not have values.
 Setting to a variable value is made through a point, but not ‘=’. For instance, in another
language program “int a = 1”. In DSL language for microcontrollers program “closedContact
I0.1”. This means, that first input - closed contact I0 - has a value 1. Operators are represented in
Table 2.

 Table 2
Operators

Graphical
representation

Text
representation

Meaning

&
AND (serial
connection)

,
V

OR (parallel
connection)

 Each program represents a logical expression and returns and prints the values of coils.
working of serial and parallel connections (Table 3).
 Table 3

Logical expressions

first
bit

second
bit

& (serial
connection)

V (parallel
connection)

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

Graphical representation is pictured in Figure 1:

Conferinţa tehnico-ştiinţifică a studenţilor, masteranzilor şi doctoranzilor, 1-3 aprilie 2020, Chișinău, Republica Moldova

161

Figure 1. Graphical representation of our context-free developed grammar

Presentation of the Context Free Grammar

VT = {start, (,), V, &, ., open contact, closed contact, active coil, inactive coil, I, M, Q, 0..9,
end}.

VN = {<source code>, <program>, <contact>, <coil>, <digit>, <value>, <operators>}.

Rules:

P = { <source code> → start <program>
<program> → (<program> | <contact> | <coil>
<contact> → open contact I <digit> . <value> <operators> | open contact M <digit>
<operators> | closed contact I <digit> . <value> <operators> | closed contact M <digit>
<coil> → active coil Q <digit> <operators> | active coil M <digit> <operators> | inactive

coil Q <digit> <operators> | inactive coil M <digit> <operators>
<operators> → & <operators> <contact> <operators>+ | V <operators>
<contact><operators>+ | & <operators> <coil> <operators>+ | V <operators> <coil>
<operators>+ |) <operators>+ | (<operators>+ | end | ε
<value> → 0 | 1
<digit> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 <digit> | 2 <digit> | 3 <digit> | 4 <digit> | 5

<digit> | 6 <digit> | 7 <digit> | 8 <digit> | 9 <digit>
 }

Program with one connection : start closed contact I0.1 & active coil Q0 end. The
implementation is presented in the Figure 2 and Figure 3.

Figure 2. Analysis of the string derivation

Conferinţa tehnico-ştiinţifică a studenţilor, masteranzilor şi doctoranzilor, 1-3 aprilie 2020, Chișinău, Republica Moldova

162

Figure 3. Parse tree for a program with one connection

Conclusions

 This paper is meant to present a context-free grammar defined for ladder diagram as a DSL,
whose schematics would help in programming a PLC to perform the same control functions. The
programming language of a PLC was designed to resemble ladder logic diagrams because it makes
them easier to program. In this way, it represents an important step in using PLC system, which
makes machinery and systems work automatically and, thus, becoming very important and needed
in all kinds of industry. For this domain specific language were defined lexical considerations,
semantic rules and grammar, due to which can be built a working program by means of which is
established the actual logic of the control system inside the PLC. The program is entered and
viewed via a personal computer connected to the PLC programming port.

References
1. PETRUZELLA, FRANK D. Programmable Logic Controllers. Programmable Logic

Controllers - 4th edition. New York: McGraw-Hill, 1989.
2. BOLTON, W. Programmable Logic Controllers – 5th edition. Oxford: Elsevier Ltd., 2009.
3. Sharif University of Techonology - Electrical Engineering Department, Ladder Logic

[online], [accessed 03.03.2020]. Available:
http://ee.sharif.edu/~industrialcontrol/LADDER_LOGIC_Tutorial.pdf

4. Ykanchanam, PLC Introduction [online], 2019, [accessed 05.03.2020]. Available:
https://medium.com/@ykanchanam/plc-introduction-bb037a447d58

5. Atul Wadhai, Explain Ladder Logic and its advantages [online], 2007, [accessed
05.03.2020]. Available: https://medium.com/@atulwadhai/explain-ladder-logic-and-its-
advantages-83b22cbf3e96

http://ee.sharif.edu/~industrialcontrol/LADDER_LOGIC_Tutorial.pdf
https://medium.com/@ykanchanam/plc-introduction-bb037a447d58
https://medium.com/@atulwadhai/explain-ladder-logic-and-its-advantages-83b22cbf3e96
https://medium.com/@atulwadhai/explain-ladder-logic-and-its-advantages-83b22cbf3e96

