

S1-P.24

Photocatalytic Degradation of Methylene Blue with Composite NanocrystallineTiO₂+diatomite

T.Ya. Datsko¹, V.I. Zelentsov¹, and D.P. Dvornikov²

¹ Institute of Applied Physics, Chisinau, Moldova

² Institute of Electronic Engineering and Nanotechnologies D.Ghitu, Chisinau, Moldova

In this study photocatalytic activity of the prepared nano-sized TiO_2 -based composite was tested by decolorisation/degradation of Methylene blue (MB) as a model pollutant under UV illumination. The composite was synthesized by a modified heterogeneous hydrolysis method in the presence of diatomite suspension by using $TiCl_4$ as titania precursor.

The photocatalyst was found to be very active for the photocatalytic decomposition of MB in aqueous solution. The percent decolorization in 60 min was 98% with initial MB concentration 53mg/L. The photocatalytic activity was correlated with physico-chemical properties of the synthesized materials. There is a synergistic effect of grafting titanium dioxide onto the surface of diatomite: the photocatalytic activity of TiO₂ dispersed on the diatomite surface vas found to be much higher than of the bulk titania mainly due to the high surface area and uniform distribution of TiO₂ on clay mineral avoiding aggregation.