

S6-P.5

Static *vs* **Novel Dynamic Biofouling-Testing of Fouling-Release Coatings for Marine Applications: Pros and Cons**

H. Qiu^{1,2}, I. Hölken², A. Gapeeva¹, R. Adelung¹, and M. Baum¹

¹ Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kiel, Germany ² Phil Science AC, Kiel, Communication Communication of the Science of Communication of the Science of Communication of the Science of Communication of Com

² Phi-Stone AG, Kiel, Germany

With increasing numbers of seaborn transportation of goods worldwide, the exploitation of the ocean is rising. More and more ships and marine equipment with biocide-containing antifouling coatings are in contact with the ecosystem "ocean". The development of environmentally friendly coatings preventing or allowing a management of biofouling is therefore an urgent issue. To achieve this aim, it is essential to have access to appropriate immersion testing methods to evaluate the fouling-release properties of novel coating systems under most realistic conditions. In this study, a novel dynamic biofouling-test stand was designed and constructed to simulate the movement of a ship and to provide a reproducible testing method for marine coatings. Mechanically durable and environmentally friendly polythiourethane (PTU) / tetrapodal zinc oxide (t-ZnO) microparticle composite as well as reference materials such as AlMg3 alloys and pure polydimethylsiloxane (PDMS) were immersed in the Baltic Sea under static and dynamic conditions were found.