

S1-P.4

Resistivity Response to Stress and Strain of a Flexible Bi₂Te₃ Based Thermoelectric Material

L.O. Akinsinde¹, S. Scheitz¹, L. Zimoch², J. K. Sierck², L. Siebert², R. Adelung², U. Schürmann², M. A. Rübhausen¹, T. Dankwort², and L. Kienle²

Here we report about the synthesis of Bi_2Te_3 based flexible thermoelectric materials and the response of the electrical resistivity to tensile and compressive stress. As a template fiber spun polymers have been used onto which a thin composite film of graphene and Bi_2Te_3 nanoplates was deposited. The Bi_2Te_3 nanoplates were synthesized using the polyol method. Upon straining the material, the resistivity dropped which is attributed to the increased contact between the individual wires.

¹ Center for Free Electron Laser Science (CFEL), Institute for Nanostructures and Solid State Physics (INF), Universität Hamburg

² Intitute for Materials Science, Kiel University, Kiel, Germany