

S1-P.43 Slow Relaxation of Magnetization in a Family of Linear Mn^{III}M^{III}Mn^{III} (M = Fe, Ru, Os) Compounds

M.Revenco, M.Secu¹, S.Ostrovsky², O.Reu², A.Palii², O.Palamarciuc¹, K.Pedersen³, R.Clerac³ and S.Klokishner² ¹State University of Moldova, Chişinău, Moldova

²Institute of Applied Physics, Academy of Sciences of Moldova, Chişinău, Moldova ³Centre de Recherche Paul Pascal, CNRS, Universite de Bordeaux, France

The experimental and theoretical study of a family of linear trimeric [NEt₄] $\{[Mn(L)]_2[M(CN)_6]\}$ (M = Fe, Ru, Os) compounds is reported. All three complexes demonstrate slow relaxation of magnetization at low temperatures. The theoretical model for the explanation of the magnetic behavior (the magnetic susceptibility as a function of temperature and magnetization as a function of the applied magnetic field) includes the spin-orbital interaction acting within the ground ${}^{2}T_{1}$ multiplet of the Fe^{III}, Ru^{III} or Os^{III} ion, the axial crystal field that splits this multiplet into an orbital singlet and orbital doublet, the zero-field splitting for the Mn^{III} ions, the isotropic exchange interaction in the M-Mn pairs as well as the intercluster interaction taken within the mean field approximation. The proposed model provides a good agreement between the observed and calculated magnetic behavior. The low-lying energy levels form the energy barriers for magnetization reversal for all examined compounds. The calculated heights of these barriers are close to the observed ones.