

S1-P.41

Effect of Spin Coating Technique on Mechanical Properties of Silicophosphate Thin Film Doped by Neodymium

D. Grabco¹, O. Shikimaka¹, M. Elisa², B. Sava², L. Boroica³, E. Harea¹, C. Pyrtsac¹, A. Prisacaru¹, I. Feraru², Z. Barbos¹ and Ia. Vreme¹

This work is focused on the effect of spin coating technique on the mechanical properties of silicophosphate (SP) thin films belonging to system $SiO_2-P_2O_5-Nd_2O_3$. The thin films have been obtained by spin coating technique for three rotation speeds: 2000, 3500 and 5000 rpm. A soda-lime-silicate (SLS) glass was used as a substrate. Strength characteristics (Young modulus, *E*, hardness, *H*, and plasticity index, H/E) of the $SiO_2-P_2O_5-Nd_2O_3$ films were determined by using the dynamical nano/microindentation under $P_{max}=10$, 30, 50, 100, 900 mN. As a result of the fulfilled studies, it was drown a conclusion: new materials with regulable mechanical properties (elastic modulus, hardness, plasticity, brittleness) can be fabricated for practical applications.

¹Institute of Applied Physics, Chisinau, Moldova

²Institute of Optoelectronics Bucarest-Magurele, Romania

³National Institute for Laser, Plasma & Radiation Physics, Romania