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I. INTRODUCTION  

Quantum computing is based on application of linear 

operators, which transform the state vectors of one- and 

many-qubit systems in quantum circuits containing quantum 

logical elements. In this case, a ket-vector |𝜓⟩ of one qubit is 

defined in a two-dimensional Hilbert space with basis vectors 

|0⟩ and |1⟩ as a linear superposition of these vectors with 

arbitrary complex constants 𝑐1 and 𝑐2 (|𝜓⟩ = 𝑐1|0⟩ +
𝑐2|1⟩,   |𝑐1|

2 + |𝑐2|
2 = 1 ). Two examples of one-qubit 

systems are an electron with two possible projections of the 

spin on the quantification axis and a photon with two possible 

polarizations. 

The states of a N-qubit system are determined by the tensor 

product of corresponding one-qubit states: |𝜓⟩ =
|𝜓1⟩⨂…⨂|𝜓𝑁⟩, where |𝜓1⟩ ∈ 𝐻1, … , |𝜓𝑁⟩ ∈ 𝐻𝑁 ,  |𝜓⟩ ∈
𝐻1⨂…⨂𝐻𝑁 and 𝐻𝐾 (𝐾 = 1,… ,𝑁) are the Hilbert spaces to 

which the state vectors |𝜓𝐾⟩ belong.  

It would seem possible to store in a quantum computer an 

infinite amount of information, because any qubit is 

represented geometrically by the radius-vector of a point on 

the Bloch sphere surface. However, such a scenario cannot 

be realized because of the limitations imposed by the 

Wootters and Zurek no-cloning theorem [1, 2]. 

Despite the restrictions of the no-cloning theorem, there 

are a lot of publications on quantum computing, especially 

after the discovery of Deutsch-Jozsa [3, 4], Shor [5] and 

Grover [6, 7] algorithms. In these studies the spin algebra 

formalism is used due to its simplicity. Earlier, it was shown 

that the Schwinger representation of the angular momentum 

[8] can be used in quantum computing [9].  

In this paper, encoding and decoding the information in a 

quantum computer in Schwinger representation are 

discussed. 

 

II. TWO-BOSON REPRESENTATION OF AN EFFECTIVE SPIN 

RELATED TO A N-QUBIT SYSTEM 

In the Schwinger representation, the spin projection 

operators of the spin S = 1/2 are [8]: 

  𝑆𝑥 =
1

2
(𝑎+𝑏 + 𝑎𝑏+),    𝑆𝑦 = 

𝑖

2
 (𝑎𝑏+ − 𝑎+𝑏),                                           

                             𝑆𝑧 =
1

2
(𝑎+𝑎 − 𝑏+𝑏),                               (1)                

where 𝑎+, 𝑎  and 𝑏+, 𝑏 are the creation and destruction 

operators of the bosons of  a- and b-types, which satisfy the 

kinematic conditions 

                          𝑎+𝑎 + 𝑏+𝑏 = 𝐼,                                        (2) 

and I is the unit operator, defined in the two-dimension 

Hilbert space. Based on this relation, only lowest states of 

coupled a- and b-oscillators satisfy the condition 𝑛𝑎 + 𝑛𝑏 =
1. Only these lowest states are necessary for representing the 

two basis spin functions. Therefore, the infinite number of 

oscillators states with 𝑛𝑎 + 𝑛𝑏 > 1 must be excluded.  

        In the case of the effective half-integer spin 𝑆 = 2𝑁−1 −
1

2
 related to a N-qubit system, there are 2S kinematic 

conditions that follow from the unitarity of the spinor 

operator: 

         𝑈𝑆 =  

(

 
 
 
 
 

[(2𝑆)!]−1/2𝑎2𝑆

[(2𝑆 − 1)!]−1/2𝑎2𝑆−1𝑏
 ⋮

[(𝑆 + 𝑀)! (𝑆 −𝑀)!]−1/2𝑎𝑆+𝑀𝑏𝑆−𝑀

 ⋮
[(2𝑆 − 1)!]−1/2𝑎𝑏2𝑆−1

[(2𝑆)!]−1/2𝑏2𝑆 )

 
 
 
 
 

.       (3)                  

 

Indeed, averaging the operator equation  

                                𝑈𝑆
+𝑈𝑆 = 𝐼                                            (4) 

with respect to two-boson wave functions |𝑆 + 𝑀⟩𝑎|𝑆 −
𝑀⟩𝑏 (𝑀 = 𝑆, 𝑆 − 1,… , 1 − 𝑆,−𝑆), one can obtain the 

following algebraic equation of 2S degree with respect to the 

variable 𝑛 = 𝑛𝑎 + 𝑛𝑏 [9]: 

 

𝑛2𝑆 − 𝐶2𝑆−1𝑛
2𝑆−1 + 𝐶2𝑆−2𝑛

2𝑆−2 − ⋯+ (−1)2𝑆𝐶2𝑛
2 +

                (−1)2𝑆+1[2 (𝑆 − 1

2
)]! 𝑛 = (2𝑆)!                          (5) 

 

Here I is the unit operator, defined in the (2S+1)-dimension 

Hilbert space, 

|𝑆 + 𝑀⟩𝑎|𝑆 − 𝑀⟩𝑏 = 

199
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         [(𝑆 + 𝑀)! (𝑆 − 𝑀)!]−
1

2(𝑎+)𝑆+𝑀(𝑏+)𝑆−𝑀|0⟩,            (6) 

 

and |0⟩ is the vacuum state (|0⟩ = |0⟩𝑎|0⟩𝑏). In the case of 

one qubit (S =1/2), the Eq. (5) transforms into the kinematic 

condition 𝑛 = 𝑛𝑎 + 𝑛𝑏 = 1, which is the Eq. (2) averaged on 

two-boson wave functions |1⟩𝑎|0⟩𝑏 and |0⟩𝑎|1⟩𝑏 . At half-

integer S >1/2 there are 2S solutions of the Eq. (5), of which 

one is a real solution, 𝑛1 = 2𝑆, and the other 2S-1 solutions 

are either pairwise imaginary in the case of S = 3/2, or  

pairwise complex conjugated in all other cases.  

III. BELL STATES  

Let us consider a quantum circuit containing the CNOT 

gate, in the controlled entrance of which the one-qubit 

Hadamart element H is switched on. On both entrances 

(controlled and target) of the quantum circuit the same basis 

vectors |1⟩𝑎|0⟩𝑏 and |0⟩𝑎|1⟩𝑏 are switched on. After passing 

the Hadamart gate, one of these vectors becomes (Fig. 1a) 

 

𝐻|1⟩𝑎|0⟩𝑏 = 
1

√2
[𝑎+(𝑎 + 𝑏) + 𝑏+(𝑎 − 𝑏)](|1⟩𝑎|0⟩𝑏) =

                               
1

√2
(|1⟩𝑎|0⟩𝑏 + |0⟩𝑎|1⟩𝑏),                        (7) 

where 

                  𝐻 =  
1

√2
[𝑎+(𝑎 + 𝑏) + 𝑏+(𝑎 − 𝑏)].                  (8) 

        The operators 𝑎+, 𝑎, 𝑏+ and 𝑏 from (8) satisfy the 

kinematic condition (2). 

a)  

 

 
 

 

b) 

 

 
 

 

c) 

 

 
 

 

d) 

 

 
 

 

 

       Fig. 1. Quantum circuit for encoding the information 

with creations of Bell states |𝜓00
𝐵 ⟩, |𝜓01

𝐵 ⟩, |𝜓10
𝐵 ⟩ and |𝜓11

𝐵 ⟩, 
(|0⟩ = |1⟩𝑎|0⟩𝑏 , |1⟩ = |0⟩𝑎|1⟩𝑏). 

  

 

 

The state vector (7) comes at a controlled entrance of the 

CNOT gate. Thus, the ket-vector |𝜑1⟩ coming at the 

          The state vector (7) comes at a controlled entrance of 

the CNOT gate. Thus, the ket-vector |𝜑1⟩ coming at the 

entrance of the CNOT gate can be represented in the form  

|𝜑1⟩ =
1

√2
(|1⟩𝑎|0⟩𝑏 + |0⟩𝑎|1⟩𝑏) ⊗ (|1⟩𝑎|0⟩𝑏) =

                            
1

√2
(|3⟩𝑎|0⟩𝑏 + |1⟩𝑎|2⟩𝑏).                          (9) 

Under the action of the unitary CNOT operator (for 

simplicity, denoted by 𝑈𝐶𝑁) the ket-vector |𝜑1⟩ is 

transformed into one of the maximally entangled states (Bell 

states):  

|𝜓00
𝐵 ⟩ = 𝑈𝐶𝑁|𝜑1⟩ = 

1

√2
(
𝐼           0       
 0  𝑎+𝑏 + 𝑎𝑏+

) (|3⟩𝑎|0⟩𝑏 +

            |1⟩𝑎|2⟩𝑏) =
1

√2
(|3⟩𝑎|0⟩𝑏 + |0⟩𝑎|3⟩𝑏).                  (10)                

 

In the Eq. (10) the 𝑈𝐶𝑁 operator is determined by                                                                                                                                                                    

 

                               𝑈𝐶𝑁 = (
𝐼           0       
 0  𝑎+𝑏 + 𝑎𝑏+

),                       (11) 

 

where I and 0 are the unit and zero operators defined in a two-

dimensional Hilbert space.  

          Similarly, the other three Bell states |𝜓01
𝐵 ⟩, |𝜓10

𝐵 ⟩ and 

|𝜓11
𝐵 ⟩ can be obtained: 

 

           |𝜓01
𝐵 ⟩ = 

1

√2
(|2⟩𝑎|1⟩𝑏 + |1⟩𝑎|2⟩𝑏),                           

                      |𝜓10
𝐵 ⟩ = 

1

√2
(|3⟩𝑎|0⟩𝑏 − |0⟩𝑎|3⟩𝑏),              (12)    

   |𝜓11
𝐵 ⟩=

1

√2
(|2⟩𝑎|1⟩𝑏 − |1⟩𝑎|2⟩𝑏).    

                  

The Bell states |𝜓01
𝐵 ⟩, |𝜓10

𝐵 ⟩ and |𝜓11
𝐵 ⟩ from (12) are obtained 

using the same quantum circuit as in the case of the Bell state 

(10) by applying to the controlled and target entrances the 

basis vectors |1⟩𝑎|0⟩𝑏 and |0⟩𝑎|1⟩𝑏, |0⟩𝑎|1⟩𝑏 and |1⟩𝑎|0⟩𝑏, 

|0⟩𝑎|1⟩𝑏 and |1⟩𝑎|0⟩𝑏, respectively (Fig. 1, b - d). 

      The indices 𝛼 and 𝛽 for the Bell states |𝜓𝛼𝛽
𝐵 ⟩ (𝛼𝛽 = 00, 

01, 10, 11) refer to the wave function of two qubits in the 

spinor representation, in which the spinors |0⟩ and |1⟩ are the 

basis functions of each of the qubits. In the two-boson 

representation, the states of coupled oscillators |1⟩𝑎|0⟩𝑏  and 

|0⟩𝑎|1⟩𝑏 correspond to these spinors. To simplify the 

notations, spinor notations are used for the indices 𝛼 and 𝛽 in 

the Bell states, as well as for the operators 𝐿𝛼𝛽 (see Section 

IV below), although all calculations were performed in the 

two-boson representation. 

IV. ENCODING THE INFORMATION IN A QUANTUM 

COMPUTER BASED ON BELL STATES 

Let us consider one of the Bell states, for example, |𝜓00
𝐵 ⟩. Let 

two scientists, Albert and Boris [10], are exchanging 

information via a quantum communication channel and are 

preparing several copies of the state |𝜓00
𝐵 ⟩. Boris takes one 

qubit from each pair. Albert encodes each pair of consecutive 

B

i 
 

H

i 
|𝜓00
𝐵 ⟩  

|0⟩  

|0⟩  

i 

B

i 
 

H

i 
|𝜓01
𝐵 ⟩  

|1⟩  

|0⟩  

B

i 
 

H

i 
|𝜓10
𝐵 ⟩  

|0⟩  

|1⟩  

B

i 
 

H

i 
|𝜓11
𝐵 ⟩  

|1⟩  

|1⟩  
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●  
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qubits 𝛼𝛽  by the operator 𝐿𝛼𝛽 and acts on his qubit of the 

pair by this operator. There are four 𝐿𝛼𝛽 operators: 𝐿00 = 𝐼 =

𝑎+𝑎 + 𝑏+𝑏,  𝐿01 = 𝜎𝑥 = 𝑎
+𝑏 + 𝑎𝑏+,  𝐿10 = 𝜎𝑧 = 𝑎

+𝑎 −
𝑏+𝑏 ,  𝐿11 = 𝑖𝜎𝑦 = 𝑎

+𝑏 − 𝑎𝑏+, where 𝜎𝑥, 𝜎𝑦 and 𝜎𝑧 are the 

Pauli matrices and I is the unit operator. Taking into 

consideration that 𝐿𝛼𝛽 operators have the properties 

𝐿00|1⟩𝑎|0⟩𝑏 = 𝐼|1⟩𝑎|0⟩𝑏 = |1⟩𝑎|0⟩𝑏 ,  

 𝐿00|0⟩𝑎|1⟩𝑏 = |0⟩𝑎|1⟩𝑏 , 

     𝐿01|1⟩𝑎|0⟩𝑎 = 𝜎𝑥|1⟩𝑎|0⟩𝑎 = |0⟩𝑎|1⟩𝑏 ,  

     𝐿01|0⟩𝑎|1⟩𝑏 = 𝜎𝑥|0⟩𝑎|1⟩𝑏 = |1⟩𝑎|0⟩𝑏 ,  

                     𝐿10|1⟩𝑎|0⟩𝑏 = 𝜎𝑧|1⟩𝑎|0⟩𝑏 = |1⟩𝑎|0⟩𝑏 ,         

     𝐿10|0⟩𝑎|1⟩𝑏 = 𝜎𝑧|0⟩𝑎|1⟩𝑏 = −|0⟩𝑎|1⟩𝑏 , 

     𝐿11|1⟩𝑎|0⟩𝑏 = 𝑖𝜎𝑦|1⟩𝑎|0⟩𝑏 = −|0⟩𝑎|1⟩𝑏 ,  

               𝐿11|0⟩𝑎|1⟩𝑏 = 𝑖𝜎𝑦|0⟩𝑎|1⟩𝑏 = |1⟩𝑎|0⟩𝑏 ,          (13) 

 

we obtain all the four Bell states:  

(𝐿00⨂𝐼 )|𝜓00
𝐵 ⟩ =

1

√2
(𝐼⨂𝐼)(|3⟩𝑎|0⟩𝑏 + |0⟩𝑎|3⟩𝑏) = 

1

√2
(|3⟩𝑎|0⟩𝑏 + |0⟩𝑎|3⟩𝑏) = |𝜓00

𝐵 ⟩, 

(𝐿01⨂𝐼 )|𝜓00
𝐵 ⟩ =

1

√2
(𝜎𝑥⨂𝐼)(|3⟩𝑎|0⟩𝑏 + |0⟩𝑎|3⟩𝑏) =  

                     
1

√2
(|2⟩𝑎|1⟩𝑏 + |1⟩𝑎|2⟩𝑏) = |𝜓01

𝐵 ⟩,                 

(𝐿10⨂𝐼 )|𝜓00
𝐵 ⟩ =

1

√2
(𝜎𝑧⨂𝐼)(|3⟩𝑎|0⟩𝑏 + |0⟩𝑎|3⟩𝑏) = 

1

√2
(|3⟩𝑎|0⟩𝑏 − |0⟩𝑎|3⟩𝑏) = |𝜓10

𝐵 ⟩, 

(𝐿11⨂𝐼 )|𝜓00
𝐵 ⟩ =

1

√2
(𝑖𝜎𝑦⨂𝐼)(|3⟩𝑎|0⟩𝑏 + |0⟩𝑎|3⟩𝑏) =  

                   
1

√2
(|2⟩𝑎|1⟩𝑏 − |1⟩𝑎|2⟩𝑏) = |𝜓11

𝐵 ⟩                (14)      

   

Eqs. (14) are particular cases of the following generalized 

equation: 

             ( 𝐿𝛼𝛽⨂𝐼)|𝜓00
𝐵 ⟩ = |𝜓𝛼𝛽

𝐵 ⟩,   𝛼, 𝛽 = 0,1.                (15) 

To decode the information sent by Albert to Boris, it is 

necessary to start from the quantum circuit, by means of 

which the Bell states (10) and (12) were build: 

                      |𝜓𝛼𝛽
𝐵 ⟩ = 𝐶𝑁𝑂𝑇(𝐻|𝛼⟩)⨂|𝛽⟩.                     (16) 

 Acting by the operator  (𝐶𝑁𝑂𝑇)−1 on the state vector  |𝜓𝛼𝛽
𝐵 ⟩, 

from Eq. (16), we can get:  

               (𝐻|𝛼⟩)⨂|𝛽⟩ = (𝐶𝑁𝑂𝑇)−1|𝜓𝛼𝛽
𝐵 ⟩.                      (17)   

   Operators CNOT and H have the properties  

 

               (𝐶𝑁𝑂𝑇)2 = 𝐼, (𝐶𝑁𝑂𝑇)−1 = 𝐶𝑁𝑂𝑇,                   (18) 

𝐻2 = 𝐻. 

This allows to perform the following decoding quantum 

circuit:  

 

 

 
 

 

Fig. 1. The quantum circuit for decoding the information with 

transformation of Bell state |𝜓𝛼𝛽
𝐵 ⟩ (𝛼𝛽 = 00, 01, 10, 11) into 

spinor basis vectors |𝛼⟩ and |𝛽⟩  (𝛼𝛽 = 0,1); (|0⟩ =
|1⟩𝑎|0⟩𝑏 , |1⟩ = |0⟩𝑎|1⟩𝑏).  

 

     Here is taken into account that the state vector H|𝛼⟩ after 

passing through the Hadamard gate is transformed into a 

basis vector |𝛼⟩  (𝐻 ∙ 𝐻|𝛼⟩ =𝐻2|𝛼⟩ =|𝛼⟩). 

CONCLUSIONS 

In quantum computer science, the formalism of spinor 

algebra is traditionally applied, along with other branches of 

mathematics, including: finding the eigenvalues and 

eigenfunctions of linear operators, finding the tensor products 

between state vectors, as well as between matrices,  tensor 

products of linear spaces, and others. 

This paper discusses the application of the Schwinger 

representation of the angular momentum to quantum 

computing. It is shown how to perform encoding and 

decoding of information in a quantum computer in this 

representation using the maximally entangled states (the Bell 

or EPR states). 
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